

Lecture Notes in Artificial Intelligence 3539
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Katharina Morik Jean-François Boulicaut
Arno Siebes (Eds.)

Local Pattern
Detection

International Seminar
Dagstuhl Castle, Germany, April 12-16, 2004
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Katharina Morik
University of Dortmund, Computer Science Department, LS VIII
44221 Dortmund, Germany
E-mail: morik@ls8.cs.uni-dortmund.de

Jean-François Boulicaut
INSA Lyon, LIRIS CNRS UMR 5205
Batiment Blaise Pascal
69621 Villeurbanne, France
E-mail: Jean-Francois.Boulicaut@insa-lyon.fr

Arno Siebes
Utrecht University
Department of Information and Computing Sciences
PO Box 80.089, 3508TB Utrecht, The Netherlands
E-mail: arno.siebes@cs.uu.nl

Library of Congress Control Number: 2005929338

CR Subject Classification (1998): I.2, H.2.8, F.2.2, E.5, G.3, H.3

ISSN 0302-9743
ISBN-10 3-540-26543-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26543-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11504245 06/3142 5 4 3 2 1 0

Preface

Introduction

The dramatic increase in available computer storage capacity over the last 10
years has led to the creation of very large databases of scientific and commercial
information. The need to analyze these masses of data has led to the evolution
of the new field knowledge discovery in databases (KDD) at the intersection
of machine learning, statistics and database technology. Being interdisciplinary
by nature, the field offers the opportunity to combine the expertise of different
fields into a common objective. Moreover, within each field diverse methods have
been developed and justified with respect to different quality criteria. We have
to investigate how these methods can contribute to solving the problem of KDD.

Traditionally, KDD was seeking to find global models for the data that ex-
plain most of the instances of the database and describe the general structure
of the data. Examples are statistical time series models, cluster models, logic
programs with high coverage or classification models like decision trees or linear
decision functions. In practice, though, the use of these models often is very lim-
ited, because global models tend to find only the obvious patterns in the data,
which domain experts already are aware of1. What is really of interest to the
users are the local patterns that deviate from the already-known background
knowledge. David Hand, who organized a workshop in 2002, proposed the new
field of local patterns.

The Dagstuhl Seminar in April 2004 on Local Pattern Detection brought
together experts from Europe, Japan, and the United States – 13 countries were
represented. Moreover, the participants brought with them expertise in the fol-
lowing fields: decision trees, regression methods, bayesian models, kernel meth-
ods, inductive logic programming, deductive databases, constraint propagation,
time series analysis, query optimization, outlier detection, frequent set mining,
and subgroup detection. All talks were focused on the topic of local patterns in
order to come to a clearer view of this new field.

Novelty of Local Pattern Detection

Researchers have investigated global models for a long time in statistics and ma-
chine learning. The database community has inspected the storage and retrieval
of very large datasets. When statistical methods encounter the extremely large
amount of records and the high dimensionality of the stored observations, ex-
ploratory methods failed. Machine learning already scales up to build up global

1 I. Guyon, N. Matic and V. Vapnik. Discovering informative patterns and data clean-
ing. In Advances in Knowledge Discovery and Data Mining (pp. 181–204). AAAI
Press/MIT Press, 1996.

VI Preface

models, either in the form of complete decision functions or in the form of learn-
ing all valid rules from databases. However, the classification does not deliver
new, surprising insights into the data, and the valid rules reflect almost ex-
actly the domain knowledge of the database designers. In contrast, what users
expect from the exploratory analysis of databases are new insights into their
data. Hence, the matter of interestingness has become a key issue. The success
of Apriori or subsequently frequent set mining can be explained by it being
the first step into the direction of local patterns. The correlation of more than
the few features, which standard statistics could analyze, could successfully be
determined by frequent set mining. Frequent set mining already outputs local
patterns. Current research tasks within this set of methods include algorithmic
concerns as well as the issues of interestingness measures and redundancy pre-
vention. The collaboration of database specialists and data miners has led to the
notion of inductive databases. The new approach writes measures of interest and
the prevention of redundancy in terms of constraints. Also users can formulate
their interests in terms of constraints. The constraints are pushed into the search
process. This new approach was discussed at the seminar intensively and a view
was found that covered diverse aspects of local patterns, namely their internal
structure and the subjective part of interestingness as given by users.

Not all the exciting talks and contributions made their way into this book,
particularly when a version of the talk was published elsewhere:

– Rosa Meo presented a language for inductive queries expressing constraints
in the framework of frequent set mining.

– Bart Goethals offered a new constraint on the patterns, namely that of the
database containing the minimal number of tiles, where each tile has the
maximal number of ‘1’.

– Stefan Wrobel gave an in-depth talk on subgroup discovery, where he clearly
indicated the problem of false discoveries and presented two approaches: the
MIDOS algorithm, which finds subgroups according to the true deviation,
and a sequential sampling algorithm, GSS, which makes subgroup discovery
fast. He also tackled the redundancy problem by maximum entropy suppres-
sion effectively. Applications on spatial subgroup discovery concluded the
talk.

– Arno Siebes employed a graphical view on data and patterns to express this
internal structure. Moreover, aggregate functions along paths in these graphs
were used to compute new features.

– Helena Ahonen-Myka gave an overview of sequence discovery with a focus
on applications on text.

– Xiaohui Liu explained how to build a noise model using supervised ma-
chine learning methods and detect local patterns on this basis. Testing them
against the noise model yields clean data. The approach was illustrated with
two biomedical applications.

– Thorsten Joachims investigated internal structures such as parse-trees and
co-reference pairing. He presented a general method for how such structures
can be analyzed by SVMs. Moreover he showed how the combinatorial ex-

Preface VII

plosion of the number of constraints can be controlled by the upper bounds
derived from statistical learning theory.

The book then covers frequent set mining in the following chapters:

– Francesco Bonchi and Fosca Giannotti show the use of constraints within
the search for local patterns.

– Jean-Francois Boulicaut applies frequent set mining to gene expression data
by exploiting Galois operators and mining bi-sets, which link situations and
genes.

– Cline Rouveirol reports on the combination of frequent sets found in gene
expression and genome alteration data.

Subgroup discovery is represented by three chapters:

– Nada Lavrac reports on successful applications of subgroup mining in
medicine.

– Josef Fürnkranz presents a unifying view of diverse evaluation measures.
– Einoshin Suzuki investigates evaluation measures in order to distinguish local

patterns from noise.
– Martin Scholz identifies global models with prior knowledge and local pat-

terns with further, unexpected regularities. His subgroup discovery exploits
iteratively a knowledge-based sampling method.

The statistical view is presented in the following chapters:

– Niall Adams and David Hand distinguish two stages in pattern discovery
1. identify potential patterns (given a suitable definition);
2. among these, identify significant (in some sense) patterns (expert or

automatic).
They notice that the former is primarily algorithmic and the latter has the
potential to be statistical. They illustrate this with an application on dis-
covering cheating students.

– Frank Höppner discusses the similarities and differences between clustering
and pattern discovery. In particular he shows how interesting patterns can
be found by the clever use of a hierarchical clustering algorithm.

– Stefan Rüping introduces a general framework in which local patterns being
produced by different processes are identified using a hidden variable. This
allows for the use of the EM algorithm to discover the local patterns directly,
that is, without reference to the global data distribution. A new scaling
algorithm handles the combination of classifiers. The method is illustrated
using business cycle data.

Phenomena of time have always been of interest in KDD, ranging from time
series analysis to episode learning. Here, three chapters are devoted to time
phenomena:

– Claus Weihs focuses on the transformation of local patterns into global mod-
els illustrated with the transcription of vocal time series into sheet music.

VIII Preface

– Katharina Morik discusses the importance of the example representation,
because it determines the applicability of methods. For local pattern de-
tection, frequency features are well suited. She shows how to characterize
time-stamped data using a frequency model.

– Myra Spiliopoulou gives an overview of local patterns exhibiting temporal
structures, namely changes of (learned) concepts.

Seminar Results

Based on the definition of David Hand2

data = background model + local patterns + random
seminar participants came up with 12 definitions of what local patterns actually
are. These were intensively discussed and we finally agreed on the following:

– Local patterns cover small parts of the data space. If the learning result is
considered a function, then global models are a complete function, whereas
local patterns are partial.

– Local patterns deviate from the distribution of the population of which they
are part. This can be done iteratively — a local pattern can be considered
the overall population and deviating parts of it are then determined.

– Local patterns show some internal structure. For example, correlations of
features, temporal or spatial ordering attributes, and sequences tie together
instances of a local pattern.

Local patterns pose very difficult mining tasks:

– Interestingness measures differ from standard criteria for global models.
– Deviation from background knowledge (global model) requires good esti-

mates of the global mode, where local patterns deviate from the overall
distribution.

– Modeling noise (for data cleaning, distinguished from local patterns).
– Automatic feature generation and selection for local patterns (for local pat-

terns other features are more successful than for global models; standard
feature selection does not work).

– Internal structures of the patterns (correlations of several features, graphs,
sequences, spatial closeness, shapes) can be expressed in several ways, e.g.,
TCat, constraints.

– Test theory for an extremely large space of possible hypotheses (large sets
are less likely, hence global models do not encounter this problem).

– Curse of exponentiality — complexity issues.
– Redundancy of learned patterns.
– Sampling for local patterns speeds up mining and enhances quality of pat-

terns.
2 David Hand. Pattern Detection and Discovery. In David Hand, Niall Adams and

Richard Bolton, editors, Pattern Detection and Discovery, Springer, 2002.

Preface IX

– Evaluation: benchmark missing.
– Algorithm issues.

We hope that this books reflects the issues of local pattern detection and
inspires more research and applications in this exciting field.

Katharina Morik
Arno Siebes

Jean-Francois Boulicaut

Table of Contents

Pushing Constraints to Detect Local Patterns . 1
Francesco Bonchi, Fosca Giannotti

From Local to Global Patterns: Evaluation Issues in Rule Learning
Algorithms . 20
Johannes Fürnkranz

Pattern Discovery Tools for Detecting Cheating in Student Coursework . . 39
David J. Hand, Niall M. Adams, Nick A. Heard

Local Pattern Detection and Clustering . 53
Frank Höppner

Local Patterns: Theory and Practice of Constraint-Based Relational
Subgroup Discovery . 71
Nada Lavrač, Filip Železný, Sašo Džeroski

Visualizing Very Large Graphs Using Clustering Neighborhoods 89
Dunja Mladenic, Marko Grobelnik

Features for Learning Local Patterns in Time-Stamped Data 98
Katharina Morik, Hanna Köpcke

Boolean Property Encoding for Local Set Pattern Discovery:
An Application to Gene Expression Data Analysis . 115
Ruggero G. Pensa, Jean-François Boulicaut

Local Pattern Discovery in Array-CGH Data . 135
Céline Rouveirol, Francois Radvanyi

Learning with Local Models . 153
Stefan Rüping

Knowledge-Based Sampling for Subgroup Discovery 171
Martin Scholz

Temporal Evolution and Local Patterns . 190
Myra Spiliopoulou, Steffan Baron

Undirected Exception Rule Discovery as Local Pattern Detection 207
Einoshin Suzuki

From Local to Global Analysis of Music Time Series 217
Claus Weihs, Uwe Ligges

Author Index . 233

Pushing Constraints to Detect Local Patterns

Francesco Bonchi and Fosca Giannotti

Pisa KDD Laboratory
ISTI - CNR, Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy

{francesco.bonchi, fosca.giannotti}@isti.cnr.it

Abstract. The main position of this paper is that constraints can be
a very useful tool in the search for local patterns. The justification for
our position is twofold. On one hand, pushing constraints makes feasi-
ble the computation of frequent patterns at very low frequency levels,
which is where local patterns are. On the other hand constraints can
be exploited to guide the search for those patterns showing deviating,
surprising characteristics. We first review the many definitions of local
patterns. This review leads us to justify our position. We then provide
a survey of techniques for pushing constraint into the frequent pattern
computation.

1 Introduction

The collection of large electronic databases of scientific and commercial informa-
tion has led to a dramatic growth of interest in methods for discovering structures
in such databases. These methods often go under the general name of data min-
ing. However, recently two different kinds of structures sought in data mining
have been identified: global models and local patterns.

Traditionally, research in statistics and machine learning has investigated
methods to build global models, i.e. high level descriptive summarizations of the
general structure of the data. Examples are statistical time series models, cluster
models, logic programs with high coverage or classification models like decision
trees, or liner regression. The intrinsic global nature turned out to be the main
drawback that these methods face in practical applications. Having a global
point of view over the data, these methods rarely produce new and surprising
insight: in fact, in order to be valid, they must summarize most of the data and
thus they usually represent obvious knowledge that domain experts are already
aware of. On the contrary, what we are seeking for is interesting and surprising
knowledge which deviates from the already known background model.

Therefore the detection of local patterns [14,20] has recently emerged as a
new research field with its own distinguished role within data mining. Local
patterns are small configurations of data which may involve just a few points
or variables, and which are of special interest because they exhibit a deviating
behavior w.r.t. the underlying global model. The new field of local pattern detec-
tion has been proposed by Hand who organized a workshop in 2002 [15]. Such
initiative gathered together researchers active in different fields (ranging from
statistics to multi-relational data mining, from machine learning to inductive
databases) but sharing a common interest for local patterns.

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 1–19, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Francesco Bonchi and Fosca Giannotti

In spring 2004, following the first successful workshop, a Dagstuhl seminar
has been organized with the declared goal of finding a definition of local patterns
on which most of the participants agree. The lively discussion has produced many
slightly different definitions.

1.1 Frequent Pattern Discovery

Even if a rigorous definition of local pattern is still missing, many recognize
the successful idea of Apriori [1,2] as a first step into the direction of local
patterns. During the last decade a lot of researchers have focussed their (mainly
methodological and algorithmic) investigations on the computational problem
of Frequent Pattern Discovery, i.e. mining patterns which satisfy a user-defined
minimum threshold of frequency [2,13].

The simplest form of a frequent pattern is the frequent itemset.

Definition 1 (Frequent Itemset Mining). Let I = {x1, ..., xn} be a set of
distinct literals, usually called items, where an item is an object with some pre-
defined attributes (e.g., price, type, etc.). An itemset X is a non-empty subset
of I. If |X | = k then X is called a k-itemset. A transaction database D is a
bag of itemsets t ∈ 2I, usually called transactions. The support of an itemset
X in database D, denoted suppD(X), is the number of transactions which are
superset of X. Given a user-defined minimum support σ, an itemset X is called
frequent in D if suppD(X) ≥ σ. This defines the minimum frequency constraint:
Cfreq[D,σ](X) ⇔ suppD(X) ≥ σ. When the dataset and the minimum support are
clear from the context, we indicate the frequency constraint simply Cfreq .

This computational problem is at the basis of the well known Association
Rules mining. An association rule is an expression X ⇒ Y where X and Y are
two itemsets. The association rule is said to be valid if the support of the itemset
X ∪ Y is greater than a given threshold, and if the confidence (or accuracy) of
the rule, defined as the conditional probability P (Y | X), is greater than a given
threshold. However frequent itemsets are meaningful not only in the context of
association rules mining: they can be used as basic element in many other kind
of analysis, ranging from classification [18,19] to clustering [26,29].

Recently the research community has turned its attention to more complex
kinds of frequent patterns extracted from more structured data: sequences, trees,
and graphs. All these different kinds of pattern have different peculiarities and
application fields, (i.e. sequences are particular well suited for business applica-
tions, frequent subtrees can be mined from a set of XML documents, and frequent
substructures from graphs can be useful, for instance, in biological applications,
in drug design and in Web-mining), but they all share the same computational
aspects: a usually very large input, an exponential search space, and a too large
solution set. This situation – too many data yielding too many patterns – is
harmful for two reasons. First, performance degrades: mining generally becomes
inefficient or, often, simply unfeasible. Second, the identification of the frag-
ments of interesting knowledge, blurred within a huge quantity of mostly useless
patterns, is difficult. Therefore, the paradigm of constraint-based mining was in-
troduced. Constraints provide focus on the interesting knowledge, thus reducing

Pushing Constraints to Detect Local Patterns 3

the number of patterns extracted to those of potential interest. Additionally,
they can be pushed deep inside the mining algorithm in order to achieve better
performance [3,4,5,6,7,8,9,11,12,16,17,21,24,25,28].

Definition 2 (Constrained Frequent Itemset Mining). A constraint on
itemsets is a function C : 2I → {true, false}. We say that an itemset I satisfies
a constraint if and only if C(I) = true. We define the theory of a constraint as
the set of itemsets which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}. Thus
with this notation, the frequent itemsets mining problem requires to compute
the set of all frequent itemsets Th(Cfreq[D,σ]). In general, given a conjunction
of constraints C the constrained frequent itemsets mining problem requires to
compute Th(Cfreq) ∩ Th(C).

In this paper we argue that constraints can be exploited in order to guide
the search for local patterns.

2 On Locality, Frequency, Deviation and Constraints

Extending a classical statistical modelling perspective with local patterns, Hand
provided the following definition [14]:

data = background model + local patterns + random component

Based on such definition the participants of the 2004 Dagstuhl seminar discussed
in order to find out what a local pattern precisely is.

At the end the participants agreed at least on the following features that a
structure must exhibit in order to be considered a local pattern.
1. local patterns cover small parts of the data space;
2. local patterns deviate from the distribution of the population of which they

are part;
3. local patterns show some internal structure.

In this Section we will review some of the definitions provided during the seminar
by the point of view of frequent pattern mining, arriving to justify our main
position: pushing constraints is an important technique to detect local patterns.
Hence, let us focus on frequent patterns and association rules. We start our
investigation with the obvious question:

Can association rules be considered local patterns?

The answer is not straightforward. On one hand, if we mine the complete set
of valid (w.r.t. reasonable support and confidence thresholds) association rules
what we obtain is a global descriptive summarization of the data, which for
instance, could be used also for classification purposes [19]. Hence what we get
is a global model. On the other hand, we could take in consideration a single
association rule: is this a local pattern? An association rule is a simple descriptive
structure which is true for a reasonably large fraction of the data. It can be
understood in isolation and there is no direct attempt at a global description
of the data. Thus we could conclude that an association rule is a local pattern.

4 Francesco Bonchi and Fosca Giannotti

Consider now an association rule with a very high support, covering a large part
of the data and representing some obvious knowledge that domain experts are
already aware of: is this still a local pattern?

From the above considerations two questions arise:

1. How much local is an association rule?
2. When does an association rule really represents some interesting knowledge?

The two questions correspond to the first two features (listed above) that a
structure must exhibit in order to be considered a local pattern: locality and
deviation. Therefore in the following we will discuss the concepts of locality and
deviation when applied to association rules and frequent patterns.

Locality (and Frequency) - In [14] Hand states: “In order to define what is
meant by local it is necessary to adopt a suitable distance measure. This choice
will depend on the data and the application domain: in the cases of categorical
variables, it might even require exact matches. It is also necessary to pick a
threshold with which the measured distance is compared.”

When talking about frequent patterns is quite obvious to think about fre-
quency as the measure of locality: a very frequent pattern is global (i.e. it covers
a large part of the data), a not so frequent pattern is local (i.e. it covers only a
small portion of the data). This agrees with the position of Morik who defined a
local pattern as a description of rare events, which deviate from a global model
and show an internal structure.

The need for mining patterns at very low support levels is confirmed also by
the applications. In [22,23] association rules are extracted in a medical context.
The authors state that most relevant rules with high quality (domain-dependent)
metrics appear only at low frequency levels. In [10] association rules are mined
with the aim of finding interesting associations between road number, weather
and light conditions and serious or fatal accidents. The authors state that inter-
esting (according to feedback from end-user) association rules were found only
at very low support levels.

Therefore, a local pattern is a “rare” or “not so frequent” pattern. But at
the same time it needs some support in order to distinguish by the mere random
component. So a local pattern must be frequent but not too much.

These last considerations lead us to reformulate Hand’s definition by the
point of view of frequency:

data = very frequent patterns + rare patterns + random component

But how can reasonable support thresholds be defined? Hand states [14]:
“Some sort of compromise is needed. One way to find a suitable compromise
would be to gradually expand the distance threshold defining local, so that the
set of points identified as possible patterns gradually increases, stopping when
the detected number of patterns seemed reasonable (a decision which depends on
resources as well as on the phenomenon under investigation).”

Pushing Constraints to Detect Local Patterns 5

Deviation (and Constraints) - Extracting too many uninteresting frequent
patterns, with large requirements both in terms of time and space, is an even
harder problem when mining at very low support level. In fact, the pruning
power of the frequency constraint decreases together with the minimum sup-
port threshold. When it becomes too low, the search space explodes and the
computation becomes intractable.

This decrease in the pruning power of the frequency constraint, can be com-
pensated by the pruning power of other constraints that the user could exploit
to restrict the search for interesting patterns.

Example 1. Consider a student database at a university: rows corresponds to stu-
dents, columns to courses, and a 1 entry (s, c) indicates that student s has taken
course c. In other words, students are the transactions and courses taken are
items in the transactions. In this context a pattern is a set of courses which sat-
isfy some interestingness conditions. Frequent patterns are set of courses which
appear together in the curricula of a number of students larger than a given
minimum support threshold.

However the search for patterns can be guided by other interestingness con-
straints. Suppose that each course has some attributes, such has semester,
credits, prerequisites, difficulty rate. One could be interested in finding fre-
quent set of courses c such that c.semester = 1 and sum(c.credits) ≥ 50. These
constraints can be pushed inside the frequent pattern algorithm, reducing the
search space and thus enabling mining at low frequency levels.

Constraints are not only useful to prune the search space, thus reducing the
computation. They have also a semantic value since the language of constraints
is what the user exploits in order to define which are the interesting patterns.

The importance of constraints in the search for local patterns is confirmed by
other definitions which emerged at the Dagstuhl seminar. According to Siebes
“local patterns are described by structural requirements, virtual attributes, and
conditions on attribute values.” Similarly Boulicaut states that a local pattern is
“a sentence from a pattern language that is apriori interesting since it satisfies
a given set of constraints and tells something about part of the data.”

As stated before, one important feature of local patterns, is deviation. Con-
straints can be our guide in the search for deviating patterns.

Example 2. Consider again our student/courses database. Suppose the average
difficulty rate of courses to be 0.35. We can search for set of courses c, (not
so) frequently taken together, and such that avg(c.difficulty rate) ≥ 0.95. If
we find a solution to this pattern query, this is clearly an interesting deviating
pattern.

The idea of the previous example might be generalized by the following näıve
definition.

Definition 3 (Deviating Pattern). Let I = {x1, ..., xn} be a set of items. Let
Ai be a non-negative real-valued attribute associated to each item. Given a min-
imum deviation factor δ > 1; an itemset X is said to be deviating on attribute
Ai if:

avg(X.Ai) ≥ δ · avg(I.Ai) or if avg(X.Ai) ≤ avg(I.Ai)
δ

6 Francesco Bonchi and Fosca Giannotti

Since the value of avg(I.Ai) is just a constant, known before the mining phase, we
can simply search for frequent itemsets which satisfy a given constraint defined
on the average aggregate on some attribute of items. This is the kind of con-
straint which is usually studied in constrained frequent pattern mining [8,24,25].
Obviously the previous is just a näıve definition geared on Example 2: however,
other similar measures of interestingness or deviation, might be defined w.r.t.
the current application.

Local Patterns = (Not So) Frequent, Deviating Patterns - As stated
above, in order to detect local interesting patterns, we can search for frequent
itemsets at very low support threshold, which satisfy some deviation constraint.
Recalling Hand’s definition [14]:

data = background model + local patterns + random component

we can say that local patterns are:
(not so) frequent: a very low minimum support threshold is exploited to dis-

card the random component;
deviating: some deviation constraint is exploited to discard the background

model and to make local patterns emerge.

Summarizing, in our vision constraints play a twofold fundamental role in the
search for local patterns: they enable mining at very low frequency levels, which
is where local patterns are; and at the same time, they guide the search towards
deviating or interesting patterns.

According to this vision, local patterns can be characterized as:
“(not so) frequent patterns which exhibit a deviating behavior.”

3 Constraint Pushing Techniques

Constrained frequent pattern mining can be seen as a query optimization prob-
lem: given a mining query Q containing a set of constraints C, provide an efficient
evaluation strategy for Q which is sound and complete (i.e. it finds all and only
itemsets in Th(Cfreq) ∩ Th(C)). A näıve solution to such a problem is to first
find all frequent patterns (Th(Cfreq)) and then test them for constraints satisfac-
tion. However more efficient solutions can be found by analyzing the property of
constraints comprehensively, and exploiting such properties in order to push con-
straints in the frequent pattern computation. Following this methodology, some
classes of constraints which exhibit nice properties have been individuated. In
this Section, by reviewing all basic works on the constrained frequent itemsets
mining problem, we recall a classification of constraints and their properties.

3.1 Anti-monotone and Succinct Constraints

A first work defining classes of constraints which exhibit nice properties is [21]. In
that paper is introduced an Apriori-like algorithm, named CAP, which exploits
two properties of constraints, namely anti-monotonicity and succinctness, in
order to reduce the frequent itemsets computation. Four classes of constraints,
each one with its own associated computational strategy, are defined:

Pushing Constraints to Detect Local Patterns 7

Loose Anti-Monotone
Monotone

Convertible
Monotone

Anti-Monotone

Convertible
Anti-Monotone

Succinct

Strongly

Fig. 1. Characterization of the classes of commonly used constraints.

1. Anti-monotone but not succinct constraints;
2. Anti-monotone and succinct constraints;
3. Succinct but not anti-monotone constraints;
4. Constraints that are neither.

Definition 4 (Anti-monotone constraint). Given an itemset X, a constraint
CAM is anti-monotone if ∀Y ⊆ X : CAM (X) ⇒ CAM (Y).

The frequency constraint is the most known example of a CAM constraint. This
property, the anti-monotonicity of frequency, is used by the Apriori [2] algorithm
with the following heuristic: if an itemset X does not satisfy Cfreq , then no
superset of X can satisfy Cfreq , and hence they can be pruned. This pruning can
affect a large part of the search space, since itemsets form a lattice. Therefore
the Apriori algorithm (see Algorithm1) operates in a level-wise fashion moving
bottom-up on the itemset lattice, from small to large itemsets. At each iteration
k Apriori counts the support of candidate itemsets (i.e. itemsets which have all
subsets frequent) of size k, which are denoted by Ck. Those ones which have a
support greater than the minimum support threshold σ are frequent itemsets.
From the set of frequent itemsets of size k (denoted by Lk) the set of candidates
for the next iteration Ck+1 is generated by the generate apriori procedure.

Other CAM constraints can easily be pushed deeply down into the frequent
itemsets mining computation since they behave exactly as Cfreq : if they are not
satisfiable at an early level (small itemsets), they have no hope of becoming

Algorithm 1 Apriori
Input: D, σ
Output: Th(Cfreq[D,σ])
1: C1 ← {{i} | i ∈ I}; k ← 1
2: while Ck �= ∅ do
3: Lk ← count(D, Ck)
4: Ck+1 ← generate apriori(Lk)
5: k + +
6: Th(Cfreq[D,σ]) ←

⋃
k Lk

8 Francesco Bonchi and Fosca Giannotti

satisfiable later (larger itemsets). Conjoining other CAM constraints to Cfreq we
just obtain a more selective anti-monotone constraint.

A succinct constraint CS is such that, whether an itemset X satisfies it or
not, can be determined based on the singleton items which are in X . Informally,
given A1, the set of singleton items satisfying a succinct constraint CS , then any
set X satisfying CS is based on A1 , i.e. X contains a subset belonging to A1

(for the formal definition of succinct constraints see [21]). A CS constraint is
pre-counting pushable, i.e. it can be satisfied at candidate-generation time: these
constraints are pushed in the level-wise computation by substituting the usual
generate apriori procedure, with the proper (w.r.t. CS) candidate generation
procedure.

For instance, consider the constraint CS ≡ min(X.price) ≤ v, which is a
succinct but not anti-monotone constraint. Given A1 = {i ∈ I | i.price ≤ v}, we
have that Th(CS) = {X ∈ 2I | ∃i ∈ X : i ∈ A1}. Therefore this constraint can be
satisfied at candidate-generation time. This can be done using a special candidate
generation procedure, which takes care of the kind of the given constraint, and
produces only candidates which satisfy it.

Constraints that are both anti-monotone and succinct can be pushed com-
pletely in the level-wise computation before it starts (at pre-processing time).
For instance, consider the constraint min(X.price) ≥ v: if we start with the
first set of candidates formed by all singleton items having price greater than
v, during the computation we will generate only itemsets satisfying the given
constraint.

Constraints that are neither succinct nor anti-monotone are pushed in the
CAP [21] computation by inducing weaker constraints which are either anti-
monotone and/or succinct.

3.2 Monotone Constraints

Monotone constraints work the opposite way of anti-monotone constraints.

Definition 5 (Monotone constraint). Given an itemset X, a constraint CM

is monotone if: ∀Y ⊇ X : CM (X) ⇒ CM (Y).

Since the frequent itemset computation is geared on Cfreq , which is anti-monotone,
CM constraints have been considered more hard to be pushed in the computa-
tion and less effective in pruning the search space. In fact, many works [3,27,9,16]
have studied the computational problem Th(Cfreq) ∩ Th(CM), proposing some
smart exploration of its search space, but all facing the inherent difficulty of the
computational problem: the CAM -CM tradeoff.

The CAM -CM Tradeoff - Such tradeoff can be described as follows. Suppose
that an itemset has been removed from the search space because it does not
satisfy a monotone constraint. This pruning avoids checking support for this
itemset, but on the other hand, if we check its support and find it smaller than
the frequency threshold, we may prune away all the supersets of this itemset.

Pushing Constraints to Detect Local Patterns 9

In other words, by monotone pruning we risk to lose anti-monotone pruning
opportunities given by the pruned itemset.

The tradeoff is clear: pushing monotone constraint can save frequency tests,
however the results of these tests could have lead to more effective anti-monotone
pruning.

The ExAnte Property and the CAM -CM Synergy - In [5] a completely
new approach to exploit monotone constraints by means of data-reduction is
introduced. The ExAnte Property [5] is obtained by shifting attention from the
pattern search space to the input data. Indeed, the CAM -CM tradeoff exists only
if we focus exclusively on the search space of the problem, while if exploited
properly, monotone constraints can reduce dramatically the data in input, in
turn strengthening the anti-monotonicity pruning power. With data reduction
techniques we exploit the effectiveness of a CAM -CM synergy.

The ExAnte property states that a transaction which does not satisfy the
given monotone constraint can be deleted from the input database since it will
never contribute to the support of any itemset satisfying the constraint.

Proposition 1 (ExAnte property [5]). Given a transaction database D and
a conjunction of monotone constraints CM , we define the μ-reduction of D as the
dataset resulting from pruning the transactions that do not satisfy CM : μCM (D) =
{t ∈ D | t ∈ Th(CM)}.
It holds that this data reduction does not affect the support of solution itemsets:

∀X ∈ Th(CM) : suppD(X) = suppμCM
(D)(X).

A major consequence of reducing the input database in this way is that it
implicitly reduces the support of a large amount of itemsets that do not satisfy
CM as well, resulting in a reduced number of candidate itemsets generated during
the mining algorithm. Even a small reduction in the database can cause a huge
cut in the search space, because all supersets of infrequent itemsets are pruned
from the search space as well. In other words, monotonicity-based data-reduction
of transactions strengthens the anti-monotonicity-based pruning of the search
space.

This is not the whole story, in fact, infrequent singleton items can not only
be removed from the search space together with all their supersets, for the same
anti-monotonicity property they also can be deleted from all transactions in
the input database (this anti-monotonicity-based data-reduction is named α-
reduction). Removing items from transactions offers another positive effect: re-
ducing the size of a transaction which satisfies CM can make the transaction
violate it. Therefore a growing number of transactions which do not satisfy CM

can be found. Obviously, we are inside a loop where two different kinds of pruning
(α and μ) cooperate to reduce the search space and the input dataset, strength-
ening each other step by step until no more pruning is possible (a fix-point has
been reached). This is the key idea of the ExAnte pre-processing method [5]. In

10 Francesco Bonchi and Fosca Giannotti

item price
a 5
b 8
c 14
d 30
e 20
f 15
g 6
h 12

(a)

item 1st 2nd 3rd

a 3 † †
b 7 4 4
c 5 5 4
d 7 5 4
e 3 † †
f 3 † †
g 5 3 †
h 2 † †

(b)

tID Itemset Total price
1 b,c,d,g 58
2 a,b,d,e 63
3 b,c,d,g,h 70
4 a,e,g 31
5 c,d,f,g 65
6 a,b,c,d,e 77
7 a,b,d,f,g,h 76
8 b,c,d 52
9 b,e,f,g 49

(c)
tID Itemset Total price
1 b,c,d,g 58
2 b,d 38
3 b,c,d,g 58
5 c,d,g 50
6 b,c,d 52
7 b,d,g 44
8 b,c,d 52
9 b,g 14

(d)

tID Itemset Total price
1 b,c,d,g 58
3 b,c,d,g 58
5 c,d,g 50
6 b,c,d 52
8 b,c,d 52

(e)

tID Itemset Total price
1 b,c,d 52
3 b,c,d 52
6 b,c,d 52
8 b,c,d 52

(f)

Table 1. Example: the price table (a), items and their supports iteration by
iteration (b), the initial transaction database (c), two intermediate status of the
database (d) and (e), and the final preprocessed database (f).

the end, the reduced dataset resulting from this fix-point computation is usu-
ally much smaller than the initial dataset, and it can feed any frequent itemset
mining algorithm for a much smaller (but complete) computation.

Suppose we have the transaction database in Table 1 (c) and the price
database in Table 1 (a). Suppose that we want to compute frequent itemsets
(min supp = 4) with a sum of prices ≥ 45. During the first iteration the total
price of each transaction is checked to avoid using transactions which do not
satisfy the monotone constraint. All transaction with a sum of prices ≥ 45 are
used to count the support for the singleton items. Only the fourth transaction is
discarded. At the end of the count we find items a, e, f and h to be infrequent.
Note that, if the fourth transaction had not been discarded, items a and e would
have been counted as frequent. At this point we perform an α-reduction of the
database: this means removing a, e, f and h from all transactions obtaining re-
duced database in Table 1 (d). After the α-reduction we have more opportunities
to μ-reduce the database. In fact transaction 2, which at the beginning has a
total price of 63, now has its total price reduced to 38 due to the pruning of
a and e. This transaction can now be pruned away. The same reasoning holds
for transactions number 7 and 9. We obtain database in Table 1 (e). At this
point ExAnte counts once again the support of alive items within the reduced
database. The item g which initially has got a support of 5 now has become
infrequent (see Table 1 (b) for items support iteration by iteration). We can
α-reduce again the database, and then μ-reduce it. After the two reductions
transaction number 5 does not satisfy anymore the monotone constraint and it
is pruned away (see database in Table 1 (f)). ExAnte counts again the support of

Pushing Constraints to Detect Local Patterns 11

items within the reduced database but no more items are found to have turned
infrequent. The fix-point has been reached at the third iteration: the database
has been reduced from 9 transactions to 4 transactions (number 1,3,6 and 8),
and interesting itemsets have shrunk from 8 to 3 (b, c and d). The final database
contains only the unique solution to problem which is the 3-itemset {b, c, d} with
support 4 and sum of prices 52. Note that on this toy-example we even do not
need to run a mining algorithm!

This simple yet very effective idea has been generalized from pre-processing
to effective mining in two main directions: in an Apriori-like breadth-first compu-
tation in ExAMiner [4], and in a FP-growth [13] based depth-first computation
in FP-Bonsai [6].

ExAMiner - The recently introduced algorithm ExAMiner [4], generalizes the
ExAnte idea to reduce the problem dimensions at all levels of a level-wise Apriori-
like computation. In this way, the CAM -CM synergy is effectively exploited at
each iteration of the mining algorithm, and not only at pre-processing as done
by ExAnte, resulting in significant performance improvements.

The idea is to generalize ExAnte’s α-reduction from singletons level to the
generic level k. This generalization results in the following set of data reduction
techniques, which are based on the anti-monotonicity of Cfreq (see [4] for the
proof of correctness).

Gk(i): an item which is not subset of at least k frequent k-itemsets can be pruned
away from all transactions in D.

Tk(t): a transaction which is not superset of at least k + 1 frequent k-itemsets
can be removed from D.

Lk(i): given an item i and a transaction t, if the number of frequent k-itemsets
which are superset of i and subset of t is less than k, then i can be pruned
away from transaction t.

In ExAMiner [4] these data reductions are coupled with the μ-reduction for
CM constraints as described in Proposition 1.

Essentially ExAMiner is an Apriori-like algorithm, which at each iteration
k − 1 produces a reduced dataset Dk to be used at the subsequent iteration k.
Each transaction in Dk, before participating to the support count of candidate
itemsets, is reduced as much as possible by means of Cfreq -based data reduction,
and only if it survives to this phase, it is effectively used in the counting phase.
Each transaction which arrives to the counting phase, is then tested against
the CM (μ-reduction) , and reduced again as much as possible, and only if it
survives to this second set of reductions, it is written to the transaction database
for the next iteration Dk+1. The procedure we have just described, is named
count&reduce (see Algorithm 2), and substitutes the usual support counting
procedure of the Apriori algorithm. In Algorithm 2 in order to implement the
data-reduction Gk(i) we use an array of integers Vk (of the size of Items), which
records for each item the number of frequent k-itemsets in which it appears. This
information is then exploited during the subsequent iteration k+1 for the global
pruning of items from all transaction in Dk+1 (lines 3 and 4 of the pseudo-code).
On the contrary, data reductions Tk(t) and Lk(i) are put into effect during the

12 Francesco Bonchi and Fosca Giannotti

Algorithm 2 count&reduce

Input: Dk, σ, CM , Ck, Vk−1

1: forall i ∈ I do Vk[i] ← 0
2: forall tuples t in Dk do
3: forall i ∈ t do if Vk−1[i] < k − 1
4: then t ← t \ i
5: else i.count ← 0
6: if |t| ≥ k and CM (t) then
7: forall X ∈ Ck, X ⊆ t do
8: X.count++; t.count++
9: forall i ∈ X do i.count++

10: if X.count = σ then
11: Lk ← Lk ∪ {X}
12: forall i ∈ X do Vk[i] + +
13: if |t| ≥ k + 1 and t.count ≥ k + 1 then
14: forall i ∈ t if i.count < k
15: then t ← t \ i
16: if |t| ≥ k + 1 and CM (t) then
17: write t in Dk+1

same iteration in which the information is collected. Unfortunately, they require
information (the frequent itemsets of cardinality k) that is available only at the
end of the actual counting (when all transactions have been used). However,
since the set of frequent k-itemsets is a subset of the set of candidates Ck, we
can use such data reductions in a relaxed version: we just check the number of
candidate itemsets X which are subset of t (t.count in the pseudo-code, lines 10
and 18) and which are superset of i (i.count in the pseudo-code, lines 9 and 14).

FP-bonsai - In [6] it is shown how the CAM -CM synergy can be exploited
within the well known FP-growth algorithm [13]. Thanks to the recursive pro-
jecting approach of FP-growth, the ExAnte data-reduction is pervasive all over
the computation. All the FP-trees built recursively during the FP-growth compu-
tation can be pruned extensively by using the ExAnte property (Proposition 1),
obtaining a computation with a smaller number of smaller trees. Such tiny FP-
trees, obtained by growing and pruning, are named FP-bonsai. The resulting
method overcomes on one hand the main drawback of FP-growth, which is its
memory requirements, and on the other hand, the main drawback of ExAMiner
which is the I/O cost of iteratively rewriting the reduced datasets to disk.

3.3 Convertible Constraints

In [24,25] a new class of tough constraints is introduced and it is shown how
such constraints can be pushed within a FP-growth [13] computation. Consider
the constraint defined on the average aggregate (e.g. avg(X.price) ≤ v): it is
quite straightforward to show that it is not anti-monotone, nor monotone, nor

Pushing Constraints to Detect Local Patterns 13

succinct. Subsets (or supersets) of a valid itemset could well be invalid and vice
versa. For this reason, in [24,25] the authors state that within the level-wise
framework, no direct pruning based on such constraints can be made. But, if
we arrange the items in price-descending-order we can observe an interesting
property: the average of an itemset is no more than the average of its prefix
itemset, according to this order. The FP-growth approach to frequent itemset
mining, is based on the concept of prefix-itemsets, therefore its quite easy to
integrate convertible constraints in such an algorithmic framework.

Definition 6 (Prefix itemset). Given a total order R over I, an itemset
X ′ = i1i2...il is called a prefix of itemset X = i1i2...im w.r.t. R, where(l ≤ m)
and items in both itemsets are listed according to order R.

Definition 7 (Convertible constraints). A constraint CCAM is convertible
anti-monotone provided there is an order R on items such that whenever an
itemset X satisfies CCAM , so does any prefix of X. A constraint CCM is con-
vertible monotone provided there is an order R on items such that whenever an
itemset X violates CCM , so does any prefix of X.

In order to be convertible, a constraint must be defined over a Prefix Increasing
(resp. Decreasing) Function, i.e. a function f : 2I → R such that for every
itemset S and item a, if ∀x ∈ S, xRa then f(S) ≤ (resp. ≥) f(S ∪ {a}). Let f
be a prefix increasing (resp. decreasing) function w.r.t. a given order R. Then
f(X) ≥ v is a convertible monotone (resp. anti-monotone) constraint, while
f(X) ≤ v is a convertible anti-monotone (resp. monotone) constraint.

Proposition 2. Any anti-monotone (resp. monotone) constraint is trivially con-
vertible anti-monotone (resp. convertible monotone): just pick any order on
items.

Example 3 (avg constraint is convertible). Let R be the value-descending order.
Given an itemset X = i1i2...il satisfying the constraint avg(X) ≥ v, where items
in X are listed in order R. For each prefix X ′ = i1i2...ik of X (1 ≤ k ≤ l), since
ik ≥ ik+1 ≥ ... ≥ il we have that avg(X ′) ≥ avg(X) ≥ v, thus also X ′ satisfies
the constraint. This implies that avg(X) ≥ v is a CCAM constraint. Similarly it
can be shown that avg(X) ≤ v is CCM w.r.t. the same order.

Interestingly, if the order R−1 (i.e. the reversed order of R) is used, the constraint
avg(S) ≥ v can be shown convertible monotone, and avg(S) ≤ v convertible
anti-monotone. Constraints which exhibit this interesting property of being con-
vertible in both a monotone or an anti-monotone constraints, are called strongly
convertible.

Definition 8 (Strongly convertible constraints). A constraint C is strongly
convertible provided there is an order R over the set of items such that C is
convertible anti-monotone w.r.t. R and convertible monotone w.r.t. R−1.

14 Francesco Bonchi and Fosca Giannotti

Constraint Anti-monotone Monotone Succinct Convertible Cl
LAM

min(S.A) ≥ v yes no yes strongly l = 1
min(S.A) ≤ v no yes yes strongly l = 1
max(S.A) ≥ v no yes yes strongly l = 1
max(S.A) ≤ v yes no yes strongly l = 1
count(S) ≤ v yes no weakly A l = 1
count(S) ≥ v no yes weakly M l = v

sum(S.A) ≤ v (∀i ∈ S, i.A ≥ 0) yes no no A l = 1
sum(S.A) ≥ v (∀i ∈ S, i.A ≥ 0) no yes no M no

sum(S.A) ≤ v (v ≥ 0, ∀i ∈ S, i.Aθ0) no no no A l = 1
sum(S.A) ≥ v (v ≥ 0, ∀i ∈ S, i.Aθ0) no no no M no
sum(S.A) ≤ v (v ≤ 0, ∀i ∈ S, i.Aθ0) no no no M no
sum(S.A) ≥ v (v ≤ 0, ∀i ∈ S, i.Aθ0) no no no A l = 1

range(S.A) ≤ v yes no no strongly l = 1
range(S.A) ≥ v no yes no strongly l = 2

avg(S.A)θv no no no strongly l = 1
median(S.A)θv no no no strongly l = 1
var(S.A) ≥ v no no no no l = 2
var(S.A) ≤ v no no no no l = 1
std(S.A) ≥ v no no no no l = 2
std(S.A) ≤ v no no no no l = 1

varN−1(S.A)θv no no no no l = 2
md(S.A) ≥ v no no no no l = 2
md(S.A) ≤ v no no no no l = 1

Table 2. Classification of commonly used constraints (where θ ∈ {≥,≤}, k
denotes itemsets cardinality).

In [24,25], two FP-growth based algorithms are introduced: FICA to mine
Th(Cfreq) ∩ Th(CCAM), and FICM to mine Th(Cfreq) ∩ Th(CCM).

A major limitation of any FP-growth based algorithm is that the initial
database (internally compressed in the prefix-tree structure) and all intermediate
projected databases must fit into main memory. If this requirement cannot be
met, these approaches can simply not be applied anymore. This problem is even
harder with FICA and FICM: in fact, using an order on items different from the
frequency-based one, makes the prefix-tree lose its compressing power. Thus we
have to manage much greater data structures, requiring a lot more main memory
which might not be available. This fact is confirmed by the experimental analysis
reported in [8]: sometimes FICA is slower than FP-growth, meaning that having
constraints brings no benefit to the computation.

Another important drawback of this approach is that it is not possible to take
full advantage of a conjunction of different constraints, since each constraint in
the conjunction could require a different ordering of items.

3.4 Loose Anti-monotone Constraints

In [8] a new class of tougher constraints, which is a proper superclass of convert-
ible anti-monotone, is introduced.

Example 4 (var constraint is not convertible). Calculating the variance is an
important task of many statistical analysis: it is a measure of how spread out a
distribution is.

Pushing Constraints to Detect Local Patterns 15

The variance of a set of number X is defined as: var(X) =
∑

i∈X (i−avg(X))2

|X| .
A constraint based on var is not convertible. Otherwise there is an order R
of items such that var(X) is a prefix increasing (or decreasing) function. Con-
sider a small dataset with only four items I = {A, B, C, D} with associated
prices P = {10, 11, 19, 20}. The lexicographic order R1 = {ABCD} is such that
var(A) ≤ var(AB) ≤ var(ABC) ≤ var(ABCD), and it is easy to see that we
have only other three orders with the same property: R2 = {BACD},R3 =
{DCBA},R4 = {CDBA}. But, for R1, we have that var(BC) � var(BCD),
which means that var is not a prefix increasing function w.r.t. R1. Moreover,
since the same holds for R2, R3, R4, we can assert that there is no order R such
that var is prefix increasing. An analogous reasoning can be used to show that
it neither exists an order which makes var a prefix decreasing function.

Following a similar reasoning we can show that other interesting constraints,
such as for instance those ones based on standard deviation (std) or unbiased
variance estimator (varN−1) or mean deviation (md), are not convertible as well.
The above example shows that such interesting constraints cannot be exploited
within a prefix pattern framework. Luckily, as we show in the following, all these
constraints share a nice property named “Loose Anti-monotonicity”. Recall that
an anti-monotone constraint is such that, if satisfied by an itemset then it is
satisfied by all its subsets. A loose anti-monotone constraint is such that, if it is
satisfied by an itemset of cardinality k then it is satisfied by at least one of its
subsets of cardinality k − 1.

Definition 9 (Loose Anti-monotone constraint). Given an itemset X, a
constraint is loose anti-monotone from size l > 0 (denoted Cl

LAM) if:

(|X | > l ∧ CLAM (X)) ⇒ ∃i ∈ X : CLAM (X \ {i})

The next proposition and the subsequent example state that the class of
Cl
LAM constraints is a proper superclass of CCAM (convertible anti-monotone

constraints).

Proposition 3. Any convertible anti-monotone constraint is trivially loose anti-
monotone: if a k-itemset satisfies the constraint so does its (k−1)-prefix itemset.

Example 5. We show that the constraint var(X.A) ≤ v is a C1
LAM constraint.

Given an itemset X , if it satisfies the constraint so trivially does X \ {i}, where
i is the element of X which has associated a value of A which is the most far
away from avg(X.A). In fact, we have that var({X \ {i}}.A) ≤ var(X.A) ≤ v,
until |X | > 1, i.e. until var(X \ {i}) is defined. Taking the element of X which
has associated a value of A which is the closest to avg(X.A) we can show that
var(X.A) ≥ v is a C2

LAM constraint. In this case we have that the constraint
is loose anti-monotone from size 2 because the variance of a singleton item is
zero. Since the standard deviation std is the square root of the variance, it is
straightforward to see that std(X.A) ≤ v is C1

LAM , and std(X.A) ≥ v is C2
LAM .

16 Francesco Bonchi and Fosca Giannotti

The mean deviation is defined as: md(X) = (
∑

i∈X |i − avg(X)|) / |X |. Once
again, we have that md(X.A) ≤ v is C1

LAM , and md(X.A) ≥ v is C2
LAM . It

is easy to prove that also constraints defined on the unbiased variance estima-
tor, varN−1 = (

∑
i∈X(i − avg(X))2) / (|X | − 1) are loose anti-monotone. In

particular, they are C2
LAM since they are not defined for singleton items.

In Table 2 and Figure 1 we provide the state-of-art classification of commonly
used constraints.

The next Proposition indicates how a Cl
LAM constraint can be exploited in a

level-wise Apriori-like computation by means of data-reduction. It states that if
at a certain iteration k > l a transaction is not superset of at least one frequent
k-itemset which satisfy the Cl

LAM constraint (a solution), then the transaction
can be deleted from the database.

Proposition 4. Given a transaction database D, a minimum support threshold
σ, and a Cl

LAM constraint, at the iteration k > l of the level-wise computation,
a transaction t ∈ D such that:

�X ⊆ t, |X | = k, X ∈ Th(Cfreq[D,σ]) ∩ Th(Cl
LAM)

can be pruned away from D, since it will never be superset of any solution item-
sets of cardinality > k.

As in ExAMiner [4] the anti-monotonicity based data reductions are coupled
with the μ-reduction for CM constraints, similarly we can exploit the above
Proposition for CLAM constraints, by embedding such loose anti-monotonicity
based data reduction with-in the count&reduce procedure (see Algorithm 2. As
usual, the more data-reduction techniques the better: we can exploit them all
together, and they strengthen each other; i.e. and the total benefit is always
greater than the sum of the individual benefits.

4 On Going Work: A Pattern Discovery System

As discussed before, one of the most important drawback of the FP-growth
based approach is that it is not possible to take full advantage of a conjunction
of different constraints, since each constraint in the conjunction could require
a different ordering of items. On the contrary, in the data-reduction based ap-
proach we can fully exploit different kind of constraints: the more constraints we
have the stronger is the data-reduction effect. In particular:
– Anti-monotone (CAM) constraints are exploited to prune the level-wise ex-

ploration of the search space together with the frequency constraint (Cfreq)
as described in [21] and in Section 3.1;

– Succinct (CS) constraints are exploited at candidate generation time as done
in [21] and in Section 3.1 ;

– Monotone (CM) constraints are exploited by means of data reduction as done
in [5,4] and in Section 3.2;

Pushing Constraints to Detect Local Patterns 17

– Convertible anti-monotone (CCAM) and Loose anti-monotone (CLAM) con-
straints are exploited by means of data reduction as described in [8] and in
Section 3.4.

Example 6. The constraint range(S.A) ≥ v ≡ max(S.A) − min(S.A) ≥ v,
is both CM and C2

LAM . Thus, when we mine frequent itemsets which satisfy
such constraint we can exploit the benefit of having together, in the same
count&reduceLAM procedure, the Cfreq -based data reductions, μ-reduction, and
reduction based on CLAM . Consider now the constraint max(S.A) ≥ v. This con-
straint is CM , CS and C1

LAM . This means that we can exploit all these properties
by using it as a succinct constraint at candidate generation time as done in [21],
and using it as a monotone constraint and as a loose anti-monotone constraint
by means of data-reduction at counting time.

At Pisa KDD Laboratory we are currently developing such unified compu-
tational framework (within the P 3D project1) which will be the efficient com-
putational engine of PATTERNIST, a pattern discovery system equipped with
a GUI, a PDQL (pattern discovery query language) and visualization tools for
the extracted patterns.

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM International
Conference on Management of Data (SIGMOD’93), 1993.

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In Proceedings of the Twentieth International Conference on Very Large
Databases (VLDB’94), 1994.

3. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Adaptive Constraint
Pushing in frequent pattern mining. In Proceedings of the 7th European Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD’03), 2003.

4. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAMiner: Optimized
level-wise frequent pattern mining with monotone constraints. In Proceedings of
the Third IEEE International Conference on Data Mining (ICDM’03), 2003.

5. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte: Anticipated
data reduction in constrained pattern mining. In Proceedings of the 7th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD’03), 2003.

6. F. Bonchi and B. Goethals. FP-Bonsai: the art of growing and pruning small
fp-trees. In Proceedings of the Eighth Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD’04), Sydney, Australia, 2004.

7. F. Bonchi and C. Lucchese. On closed constrained frequent pattern mining. In Pro-
ceedings of the Fourth IEEE International Conference on Data Mining (ICDM’04),
2004.

8. F. Bonchi and C. Lucchese. Pushing tougher constraints in frequent pattern min-
ing. Technical Report 2004-TR-63, ISTI-C.N.R., 2004. (Submitted to SDM’05).

1 http://www-kdd.isti.cnr.it/p3d/index.html

18 Francesco Bonchi and Fosca Giannotti

9. C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A dual-pruning algo-
rithm for itemsets with constraints. In Proceedings of the 8th ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD’02), 2002.

10. P. Flach et al. On the road to knowledge: mining 21 years of uk traffic accident
reports. In Data Mining and Decision Support: Aspects of Integration and Collab-
oration, pages 143–155. Kluwer Academic Publishers, January 2003.

11. G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained corre-
lated sets. In 16th IEEE International Conference on Data Engineering (ICDE’00),
2000.

12. J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-based, multidimensional
data mining. Computer, 32(8):46–50, 1999.

13. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings of the 2000 ACM International Conference on Management of Data
(SIGMOD’00), 2000.

14. D. Hand. Pattern detection and discovery. In Proceedings of the ESF Exploratory
Workshop on Pattern Detection and Discovery in Data Mining, volume 2447 of
Lecture Notes in Computer Science, 2002.

15. D. J. Hand, N. M. Adams, and R. J. Bolton, editors. Pattern Detection and Discov-
ery, ESF Exploratory Workshop, London, UK, September 16-19, 2002, Proceedings,
volume 2447 of Lecture Notes in Computer Science, 2002.

16. B. Jeudy and J.-F. Boulicaut. Optimization of association rule mining queries.
Intelligent Data Analysis Journal, 6(4):341–357, 2002.

17. L. V. S. Lakshmanan, R. T. Ng, J. Han, and A. Pang. Optimization of constrained
frequent set queries with 2-variable constraints. In Proceedings of the ACM Inter-
national Conference on Management of Data (SIGMOD’99), 1999.

18. W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on
multiple class-association rules. In In Proceedings of the 2001 IEEE International
Conference on Data Mining (ICDM’01), 2001.

19. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In 4th Int. Conf. Knowledge Discovery and Data Mining (KDD’98), pages 80–86,
New York, 1998.

20. H. Mannila. Local and global methods in data mining: Basic techniques and open
problems. In Automata, Languages and Programming, 29th International Collo-
quium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of
Lecture Notes in Computer Science, 2002.

21. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD’98), 1998.

22. C. Ordonez, L. de Braal, and C. A. Santana. Discovering interesting association
rules in medical data. In ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD’00), 2000.

23. C. Ordonez, E. Omiecinski, L. de Braal, C. A. Santana, N. Ezquerra, J. A. Taboada,
D. Cooke, E. Krawczynska, and E. V. Garcia. Mining constrained association rules
to predict heart disease. In Proceedings of the First IEEE International Conference
on Data Mining (ICDM’01), 2001.

24. J. Pei and J. Han. Can we push more constraints into frequent pattern mining?
In Proceedings of the 6th ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD’00), 2000.

25. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with con-
vertible constraints. In 17th IEEE International Conference on Data Engineering
(ICDE’01), 2001.

Pushing Constraints to Detect Local Patterns 19

26. J. Pei, X. Zhang, M. Cho, H. Wang, and P. Yu. Maple: A fast algorithm for
maximal pattern-based clustering. In Proceedings of the Third IEEE International
Conference on Data Mining (ICDM’03), 2003.

27. L. D. Raedt and S. Kramer. The levelwise version space algorithm and its applica-
tion to molecular fragment finding. In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, (IJCAI’01), 2001.

28. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.
In Proceedings of the 3rd ACM International Conference on Knowledge Discovery
and Data Mining, (SIGKDD’97), 1997.

29. M. L. Yiu and N. Mamoulis. Frequent-pattern based iterative projected cluster-
ing. In Proceedings of the Third IEEE International Conference on Data Mining
(ICDM’03), 2003.

From Local to Global Patterns:

Evaluation Issues in Rule Learning Algorithms

Johannes Fürnkranz

TU Darmstadt, Knowledge Engineering Group
Hochschulstraße 10, D-64289 Darmstadt, Germany

fuernkranz@informatik.tu-darmstadt.de

Abstract. Separate-and-conquer or covering rule learning algorithms
may be viewed as a technique for using local pattern discovery for gener-
ating a global theory. Local patterns are learned one at a time, and each
pattern is evaluated in a local context, with respect to the number of
positive and negative examples that it covers. Global context is provided
by removing the examples that are covered by previous patterns before
learning a new rule. In this paper, we discuss several research issues that
arise in this context. We start with a brief discussion of covering algo-
rithms, their problems, and review a few suggestions for resolving them.
We then discuss the suitability of a well-known family of evaluation met-
rics, and analyze how they trade off coverage and precision of a rule.
Our conclusion is that in many applications, coverage is only needed for
establishing statistical significance, and that the rule discovery process
should focus on optimizing precision. As an alternative to coverage-based
overfitting avoidance, we then investigate the feasibility of meta-learning
a predictor for the true precision of a rule, based on its coverage on the
training set. The results confirm that this is a valid approach, but also
point at some shortcomings that need to be addressed in future work.

1 Introduction

Numerous evaluation heuristics have been proposed for evaluating rules in the
context of classification rule learning, subgroup discovery and association rule
discovery (Fürnkranz, 1999; Lavrač et al., 1999; Tan et al., 2002). Nevertheless,
the issue is not yet well understood. The similarities and differences between
the different measures are not explored in sufficient depth, and it is often also
not clear, what properties we want an evaluation measure to have. Our research
aims at increasing our understanding of these issues through theoretical analysis
as well as empirical evaluation.

In this paper, we first discuss the relation between classification rule discovery
using the separate-and-conquer or covering strategy and the local pattern dis-
covery task (Section 2). Following up on (Fürnkranz and Flach, 2005), our main
tool for analysis will be visualization in coverage space (Section 3). In the follow-
ing (Section 4), we will analyze a family of well-known rule evaluation measures
that have been proposed for subgroup discovery (Klösgen, 1992; Wrobel, 1997),

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 20–38, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From Local to Global Patterns 21

function Covering(Examples)

initialize the classifier
GlobalClassifier ← ∅
loop until all examples are covered
while Examples �= ∅

find the best local pattern
LocalPattern ← FindBestLocalPattern(Examples)

add the local pattern to the classifier
GlobalClassifier ← GlobalClassifier ∪ LocalPattern

remove the covered examples
Examples ← Examples \ Covered(LocalPattern,Examples)

return GlobalClassifier

Fig. 1. The Covering Algorithm

that all have in common that they trade off coverage and precision of the rule,
but differ in the weight that they allot to each component. We will argue that,
with increasing coverage, the relative importance of coverage becomes negligible.
One of the main reasons for including coverage is the problem of overfitting, to
which precision is particularly susceptible. In the final part of the paper (Sec-
tion 5), we address this problem in a novel way, namely by using training set
statistics of a rule for predicting its test performance.

2 From Local to Global Patterns

The covering or separate-and-conquer strategy for inductive rule learning—see
(Fürnkranz, 1999) for a survey—may be viewed as a general approach for com-
bining local patterns into global classifiers. The basic idea is to repeatedly find
the best local pattern and add it to a growing theory. The goodness of the local
pattern is measured with some heuristic criterion that measures the deviation
of the class distribution of the local pattern from the overall class distribution
of the training examples. We will discuss such measures later on in this paper
(Section 4). In the simplest case, local patterns are added until each example is
covered by at least one local pattern.1 Figure 1 shows the basic covering algo-
rithm.

Rules are an obvious choice for local classifiers because a rule will typically
only cover a subset of the entire example space. Consequently, rules are fre-
quently used as a representation for local pattern discovery tasks such as associa-
tion rule mining (Agrawal et al., 1995; Hipp et al., 2000) and subgroup discovery
(Klösgen, 1996; Wrobel, 1997; Scheffer and Wrobel, 2002; Lavrač et al., 2004).
1 In practice, this constraint is often relaxed to avoid overfitting.

22 Johannes Fürnkranz

However, the covering algorithm does not depend on rule-based local pat-
terns. Ferri et al. (2004) elegantly generalized the covering framework to arbi-
trary classifiers by defining the locality via a confidence threshold: The classifier
is trained on all training examples, but it will not issue a prediction unless it
has a certain (user-specified) minimum confidence in its prediction. All training
examples that are classified with this minimum confidence are then removed,
and a new (possibly different type of) classifier is learned from the remaining
examples.

A key problem for constructing a global theory out of local patterns is that
the local patterns are discovered in isolation, whereas they will be used in the
context of other patterns. The covering strategy partially addresses this problem
by learning rules in order: all examples that are covered by previous patterns are
removed from the training set before a new pattern is learned. This guarantees
that the new local pattern will focus on new, unexplored territory. However, it
also ignores the evidence contained in the removed examples, and the successive
removal of training examples eventually leads to training sets with a very skewed
class distribution, and possibly isolated, scattered examples.

As a remedy for this problem, several authors (Cohen and Singer, 1999;
Weiss and Indurkhya, 2000; Gamberger and Lavrač, 2000) have independently
proposed the use of weighted covering (Figure 2). The basic idea is to gener-
alize the covering algorithm by introducing example weights. Initially, all ex-
amples have a weight of 1.0. However, the weights of examples that are cov-
ered by a rule will not be set to 0.0 (which is the equivalent to removing
them from the training set), but instead their weight will only be reduced.
This ensures that their influence on the evaluation of subsequent local pat-
terns is reduced, but not entirely eliminated. Different algorithms use differ-
ent weight adaptation formulas, ranging from error-based procedures motivated
by boosting (Cohen and Singer, 1999) to simple techniques such as using the
inverse of (one plus) the number of previous rules that cover the example
(Gamberger and Lavrač, 2000).

Most weighted covering algorithms also adopt a very simple stopping crite-
rion, namely they simply learn a fixed number of rules. Diversity of the rules is
encouraged by the re-weighting of the examples, but it is no longer enforced that
each example is covered by a rule. Also, the number of learned rules is typically
higher, which has the effect that most examples will be covered by more than one
rule. Thus, weighted covering algorithms have two complementary advantages:
on the one hand they may learn better local pattern because the influence of
previously covered patterns is reduced but they are not entirely ignored, on the
other hand they will produce a better classifier by combining the evidence of
more rules, thus exploiting the redundancy contained in an ensemble of diverse
local patterns (Dietterich, 2000).

While covering and weighted covering try to take into account the context of
previous patterns before generating a new local pattern, an alternative strategy
is to try to “guess” what subsequent patterns may look like. One attempt into
that direction is the PART algorithm (Frank and Witten, 1998), which does not

From Local to Global Patterns 23

function WeightedCovering(Examples)

initialize classifier and example weights
GlobalClassifier ← ∅
foreach Example ∈ Examples

Weight(Example) = 1.0

loop for a fixed number of iterations
for i = 1 . . . n

find the best local pattern
LocalPattern ← FindBestLocalPattern(Examples)

add the local pattern to the classifier
GlobalClassifier ← GlobalClassifier ∪ LocalPattern

reduce the weight of covered examples
ReduceWeights(Covered(LocalPattern,Examples))

return GlobalClassifier

Fig. 2. The Weighted Covering Algorithm

learn the next local pattern in isolation but (conceptually) learns a global model
in the form of a decision tree. From this tree, a single path is selected as the next
local pattern that can be added to the theory.2 In essence, this idea is a special
case of the delegating classifiers framework discussed above (Ferri et al., 2004).

The best local patterns are typically found via a heuristic search, using some
heuristic evaluation metric as a guide. We will discuss a few such measures
further below, but first we we have to explain coverage spaces.

3 Coverage Spaces

In recent work, Fürnkranz and Flach (2005) introduced the framework of cov-
erage spaces for analyzing rule evaluation metrics. Coverage spaces are a quite
similar to ROC-spaces, the main differences being that coverage spaces work
with absolute numbers of true positives and false positives (covered positive and
negative examples), whereas ROC-spaces work with true positive and false posi-
tive rates. A rule (or a rule set) that covers p out of a total of P positive examples
and n out of N negative examples is represented as a point in coverage space
with the co-ordinates (n, p).

Adding a rule to a rule set increases the coverage of the rule set because an
additional rule can only add new examples to the set of examples that are covered
by the rule set. All positive examples that are uniquely covered by the newly
added rule contribute to an increase of the true positive rate on the training data.
2 The implementation of this phase can be optimized so that the selected branch can

be grown directly, without the need of growing an entire tree first.

24 Johannes Fürnkranz

Fig. 3. Schematic depiction of the paths in coverage space for (left) the covering
strategy of learning a rule set adding one rule at a time and (right) greedy
specialization of a single rule.

Conversely, covering additional negative examples may be viewed as increasing
the false positive rate on the training data. Therefore, adding rule ri+1 to rule
set Ri effectively moves from point Ri = (ni, pi) (corresponding to the number
of negative and positive examples that are covered by previous rules), to a new
point Ri+1 = (ni+1, pi+1) (corresponding to the examples covered by the new
rule set). Moreover, Ri+1 will typically be closer to (N, P) and farther away from
(0, 0) than Ri.

Consequently, learning a rule set one rule at a time may be viewed as a
path through coverage space, where each point on the path corresponds to the
addition of a rule to the theory. Such a coverage path starts at (0, 0), which
corresponds to the empty theory that does not cover any examples. Figure 3
shows the coverage path for a theory with three rules. Each point Ri represents
the rule set consisting of the first i rules. Adding a rule moves to a new point
in coverage space, corresponding to a theory consisting of all rules that have
been learned so far. Removing the covered examples has the effect of moving to
a subspace of the original coverage space, using the last rule as the new origin.
Thus the path may also be viewed as a sequence of nested coverage spaces PNi.
After the final rule has been learned, one can imagine adding yet another rule
with a body that is always true. Adding such a rule has the effect that the
theory now classifies all examples as positive, i.e., it will take us to the point
R̃ = (N, P). Even this theory might be optimal under some cost assumptions.

For finding individual rules, the vast majority of algorithms use a heuris-
tic top-down hill-climbing3 or beam search strategy, i.e., they search the
space of possible rules by successively specializing the current best rule
3 If the term “top-down hill-climbing” sounds self-contradictory: hill-climbing refers to

the process of greedily moving towards a (local) optimum of the evaluation function,
whereas top-down refers to the fact that the search space is searched by successively
specializing the candidate rules, thereby moving downwards in the generalization
hierarchy induced by the rules.

From Local to Global Patterns 25

(Fürnkranz, 1999). Rules are specialized by greedily adding the condition which
promises the highest gain according to some evaluation metric. Just as with
adding rules to a rule set, successive refinements of a rule describe a path trough
coverage space (Figure 3, right). However, in this case, the path starts at the up-
per right corner (covering all positive and negative examples), and successively
proceeds towards the origin (which would be a rule that is too specific to cover
any example).

As we will see in the following, coverage spaces are well-suited for visualiz-
ing the behavior of evaluation metrics by looking at their isometrics, i.e., the
lines that connect the rules that are evaluated equally by the used heuristic
(Fürnkranz and Flach, 2005).

4 Rule Evaluation Measures

In each iteration, the covering algorithm needs to select the “best” local pattern
that can be added. Informally, a good local pattern is a pattern for which the
class distribution of the instances that it covers differs considerably from the
overall class distribution. In a concept learning scenario (where we have only
two classes, positive and negative examples for the target concept), we will try
to identify regions of the instance space in which instances of the concept are
denser than in the overall example distribution, i.e., in regions where there is a
higher proportion of positive examples.

4.1 Trading Off Precision and Coverage

Numerous rule evaluation measures have been proposed in various contexts
(Fürnkranz, 1999; Lavrač et al., 1999; Tan et al., 2002). In the following, we will
concentrate on a family of well-known evaluation metrics for subgroup discovery
(Klösgen, 1992). They have in common that they trade off two basic components:

Precision Gain g = p
p+n − P

P+N is the difference between the proportion of
positive examples in the examples covered by the local pattern and the over-
all proportion of positive examples.

Coverage c = p+n
P+N is the proportion of all examples that are covered by the

local pattern.

Figure 4 shows the isometrics in coverage space for these two basic heuristics.
Note that the second term of precision gain is constant for all local patterns.
Thus, maximizing precision gain is the same as maximizing precision, and the
isometric structure of precision gain is the same as the one for precision itself: The
rules with the lowest evaluation are those on the N -axis because they only cover
negative examples. Here, precision has its minimum value of 0 and precision gain
the minimum value of −P/(P + N). The examples with the highest evaluation
can be found on the P -axis because those are the ones that cover only positives
examples. There, precision has its maximal value of 1, and precision gain the

26 Johannes Fürnkranz

Fig. 4. Isometrics for precision gain (left) and coverage (right).

maximum value of 1 − P/(P + N). In between, the isometrics rotate around
the point (0, 0), the empty rule. For example, all rules on the diagonal (those
for which the covered positives and negative examples are distributed in the
same way as the examples in the overall distribution) are evaluated in the same
way with this heuristic (with the value 0 in the case of precision gain and with
P/(P + N) for precision). The isometrics of coverage move in parallel lines from
the empty rule (no coverage) to the universal rule (covering all examples). The
lines have an angle of 45 degrees with the N - and P -axes because for coverage
there is no difference in importance for covering a positive or covering a negative
example.

Klösgen (1996) identified three different variations for combining these
two measures, which satisfy a set of four basic axioms proposed by
Piatetsky-Shapiro (1991) and Major and Mangano (1995). He further showed
that several other measures are equivalent to these. Wrobel (1997) added a fourth
version. All four measures only differ in the way in which they trade off coverage
c versus precision gain g. These measures are:

(a)
√

cg (b) cg (c) c2g (d) c
1−cg

The isometrics of these measures are shown in Figure 5. Measure (a) was
proposed by Klösgen (1992). Its idea is to perform a statistical test on the dis-
tribution of precision gain, under the assumption that, if the true precision of
the rule were the same as the overall precision in the example set, the observed
value for precision gain should follow a binomial distribution around 0. The vari-
ance of this distribution brings in the factor

√
c. The isometrics show that the

measure has a slight tendency to prefer rules that are near the origin. In that
region, the isometrics start to bend towards the origin, which means that rules
with low coverage need smaller deviations from the diagonal than larger rules
with the same evaluation.

Measure (b) is weighted relative accuracy, as proposed independently by
Piatetsky-Shapiro (1991) and Lavrač et al. (1999). It has linear isometrics, par-
allel to the diagonal. Thus, all rules that have the same normal distance from the

From Local to Global Patterns 27

(a)
√

cg (b) cg

(c) c2g (d) c
1−c

g

Fig. 5. Different ways of trading off coverage c and relative confidence g.

diagonal are evaluated in the same way, independent of their location in coverage
space. In comparison to (a), this has increased the influence of coverage, with
the result that smaller rules are no longer preferred.

Wrobel (1997) proposed to further strengthen the influence of coverage by
squaring it, resulting in measure (c). This results in an isometric landscape that
has a clear tendency to avoid the region with low coverage near the lower left
corner (see Figure 5, lower left). Obviously, the rules found with this measure
will have a stronger bias towards generality.

Klösgen (1992) has shown that measure (d) is equivalent to several other
measures that can be found in the literature, including a χ2-test. It is quite
similar to the first measure, but its edges are bent symmetrically, so that rules
with high coverage are penalized in the same way as rules with a comparably
low coverage.

It is quite interesting to see that in regions with higher coverage, the isomet-
rics of all measures except (d) approach parallel lines, i.e., with increasing rule
coverage, they converge towards some measure that is equivalent to weighted rel-
ative accuracy. However, measures (a), (b), and (c) differ in their behavior near

28 Johannes Fürnkranz

Fig. 6. Precision (w = 0) prefers the smaller, pure rule, whereas weighted relative
accuracy (w = 1) prefers the larger rule with several exceptions

the low coverage region of the rule space. Measure (a) makes it easier for rules
in the low-coverage region near the origin, (b) is neutral, whereas (c) penalizes
this region.

It seems to be the case that two controversial forces are at work here: On the
one hand, locality and coverage of a pattern are inversely correlated: the higher
the coverage of a pattern, the more global the pattern. Thus, it seems reasonable
to encourage the discovery of patterns with low coverage, as measure (a) does.
On the other hand, low coverage patterns tend to be less reliable because their
estimated performance parameters (such as their precision) are associated with
a larger variance and a larger uncertainty. A simple, solution for this problem
might be to try to avoid these regions if possible, as measure (c) does.4 Weighted
relative accuracy (b) tries to compromise between these two approaches. Note
that precision may also be viewed in this framework, as giving no weight to the
coverage of the rule (i.e., it is equivalent to c0g).

4.2 What Is the Optimal Trade-Off?

We have seen that all measures of the general form cwg, for some w ∈ R, w ≥ 0,
implement the basic idea of measuring the quality of a local pattern with the
distance from the diagonal of the coverage space. The motivation for this ap-
proach is evident: the diagonal represents all rules that have the same overall
distribution as can be found in the entire rule set, and the goal of local pattern
discovery is to find a pattern that covers a set of instances that deviate sig-
nificantly from this default distribution. The individual measures differ only in
the way they measure this distance in different regions of coverage, i.e., in their
different choices of w.

4 This is related to the small disjuncts problem: rules with high coverage are respon-
sible for a large part of the overall error of a rule set. Nevertheless, the experiments
in (Holte et al., 1989) suggest that avoiding them entirely is not a good strategy.

From Local to Global Patterns 29

Consider the example shown in Figure 6. It shows two rules: R1 is a pure
rule, covering one fourth of all positive examples and no negative examples. R2,
on the other hand, covers 3/4 of all positive examples but also a fourth of all
negative examples, in a distribution where the prior probability of a positive
example is 4/9. Thus, the precision gain of R1 is 1−4/9 = 5/9 = 0.444, whereas
the precision gain of R2 is 3/4×4/9

3/4×4/9+1/4×5/9 −4/9 = 12/17−4/9 = 0.261. Clearly,
rule R1 is better according to this criterion (cf. also the left graph of Figure 6).

On the other hand, if we evaluate with weighted relative accuracy, we get a
different picture: rule R1 covers one fourth of all positive examples, i.e. 1/4 ×
4/9 = 1/9 of all examples. Rule R2, on the other hand, covers a 3/4 of the
positives, and 1/4 of the negatives, in total 3/4×4/9+1/4×5/9 = 17/36 of the
total number of examples. Thus, weighted relative accuracy, which multiplies
coverage with precision gain, yields only 1/9 × 1 = 1/9 = 9/81 for rule R1, but
17/36× (12/17−4/9) = 10/81 for R2. Note that these values are independent of
the absolute number of examples that are covered by the rule, they only depend
on the proportion of examples covered.5

However, intuitively, the validity and interestingness of the found patterns is
not entirely clear. If rule R1 covers only one or two positive examples, rule R2

seems to be preferable because it is backed up with a larger amount of evidence
and is therefore presumably more reliable. In our case, rule R2 would cover about
3.5 examples, but it easy to construct examples where R2 covers an arbitrary
number of examples (increase the total number of examples and/or move the
point upwards on its WRA isometric). On the other hand, if R1 covers thousands
of examples, a pure group of that size seems to be interesting irrespective of the
total training set size.

Thus, we would propose that with growing coverage, coverage becomes less
and less important for the evaluation of the quality of a found local pattern. In a
crude form, this assumption can also be found in the support/confidence pruning
framework that is paramount in association rule discovery: Rules below a given
support threshold are not considered at all, rules above the given threshold are
evaluated with their precision.6 It is also related to trading off recall and preci-
sion. While the perfect value for such a trade-off is clearly application-dependent,
we believe that for the case of discovering global patterns from local patterns,
many pure rules are preferable to a few large but impure rules, provided it is
established that the precision estimate of the rule is valid, i.e., it will generalize
to uncovered examples. The latter, of course, is not true in typical rule learning
applications, where the majority of the rules that are found with precision are
rules covering only a few examples.

5 This will not change if absolute coverage instead of relative coverage is used in
the formula because a multiplication with a constant (P + N) will not change the
isometric structure for any given coverage space.

6 Note, however, that support and coverage are not exactly the same: support is the
proportion of covered positive examples, whereas coverage ist the proportion of all
covered examples.

30 Johannes Fürnkranz

In any case, we believe that one of the main problems with the use of pre-
cision as a rule learning heuristic is that it is very susceptible to overfitting.
Rules that cover only one or a few examples on the training set are evaluated
with 100% precision, but their true precision in the entire domain will typically
be much worse. Thus, many techniques have been proposed to make precision
estimates more conservative, most prominently the Laplace- and m-estimates
(Cestnik, 1990; Clark and Boswell, 1991). In the next section, we propose an al-
ternative route that uses meta-learning for predicting the “true” precision of a
rule.

5 Meta-learning Rule Precision

We have tried to motivate that precision (gain), which is of the form cwg for w =
0, may be a better evaluator for local patterns than other measures that use a
value w > 0, provided that the precision values are not the result of overfitting. In
this section, we show experiments for learning a function that predicts the rule’s
precision on an independent test set based on the rule’s coverage on the training
set. The basic idea is to generate a large number of rules, observe their precision
on the training set and and independent test set, and learn a function that
predicts the test set precision from the (absolute) number of covered examples on
the training set. More details on this work can be found in (Fürnkranz, 2004a;b).

5.1 Meta Data Generation

We used a simple covering algorithm for learning a set of rules. For each learned
rule, we recorded the numbers of covered positive and negative examples on both
the training and an independent test set. We recorded these statistics not only
for final rules—those rules that would be used in the final theory—but also for
all their ancestors, i.e., for all incomplete rules that were eventually refined into
a final rule. These can be simply obtained by deleting the final conditions of
each rule. The main motivation for this step is that we want to have complete
information on each path in the refinement graph that yields a final rule. Figure 7
shows the meta data generation algorithm in pseudo-code.

The algorithm for generating the individual rules is a straight-forward greedy
top-down algorithm: rules are refined until no further refinement is possible. At
each refinement step, all possible immediate refinements (adding one condition)
are evaluated and the best one is selected. Among all rules encountered during
this search, the best rule is eventually returned. Note, however, that the best
rule need not be the last one searched.

We did not implement any method for pruning the obtained rules. Our main
goal is to study the test set performance of individual rules, and not so much
to learn a good theory. Therefore, the evaluation of possibly overfitting rules is
very important to us. As a consequence, we chose not to implement any filtering
heuristics which would prune those rules away. To ensure some variety in the size
of the learned rules by using evaluation heuristics with very different biases (as

From Local to Global Patterns 31

procedure GenerateRules(TrainSet,TestSet)

loop until all positive examples are covered
while Positive(TrainSet) �= ∅

find the best rule
Rule ← GreedyTopDown(TrainSet)

stop if it doesn’t cover more pos than negs
if |Covered(Rule, Positive(Examples))|

≤ |Covered(Rule, Negative(Examples))|
break

loop through all predecessors
Pred ← Rule
repeat

record the training and test coverage
TrainP ← |Covered(Rule,Positive(TrainSet))|
TrainN ← |Covered(Rule,Negative(TrainSet))|
TestP ← |Covered(Rule,Positive(TestSet))|
TestN ← |Covered(Rule,Negative(TestSet))|
print Pred,Rule,TrainP,TrainN,TestP,TestN

Pred ← RemoveLastCondition(Pred)
until Pred = null

remove covered training and test examples
TrainSet ← TrainSet \ Covered(Rule,TrainSet)
TestSet ← TestSet \ Covered(Rule,TestSet)

Fig. 7. Covering algorithm for generating and evaluating rules

will be explained below), some of which have a tendency to learn very general
rules, while others are clearly prone to overfitting.

In order to collect statistics under a fairly broad set of conditions, we varied
the following dimensions:

Datasets: We used 27 datasets with varying characteristics from the UCI repos-
itory. These datasets were selected because of their availability and moderate
size. We did not include larger datasets (such as shuttle) because the region
of interest (as we will see) is the region of rules with low coverage.

5x2 Cross-validation: For each dataset, we performed 5 iterations of a 2-
fold cross-validation. 2-fold cross-validation was chosen because in this case
the training and test sets have equal size, which makes a comparison of
the obtained estimates easier. We collected statistics for all rules of all five
iterations of two folds, i.e., a total of 10 per run.

Classes: For each dataset and each fold, we generated one dataset for each class,
treating this class as the positive class and the union of all other classes as

32 Johannes Fürnkranz

Table 1. Search heuristics used in this study. p and n are the number of covered
among a total of P and N positive and negative examples.

heuristic formula

precision p
p+n

∼ p−n
p+n

Laplace p+1
p+n+2

accuracy p+(N−n)
P+N

∼ p − n

weighted rel. acc. p+n
P+N

(p
p+n

− P
P+N

) ∼ p
P
− n

N

correlation p(N−n)−(P−p)n√
PN(p+n)(P−p+N−n)

the negative class. Rules were learned for each of the resulting two-class
datasets.

Heuristics: Finally, we ran the rule learner five times on each binary dataset,
each time using a different search heuristic. We used the five heuristics shown
in Table 1. The first four form a representative selection of search heuris-
tics with linear isometrics (Fürnkranz and Flach, 2003), while the correla-
tion heuristic (Fürnkranz, 1994) has non-linear isometrics. These heuristics
represent a large variety of learning biases. For example, it is known that
WRA and Accuracy tend to prefer simpler rules with high coverage, whereas
Precision and Laplace tend to prefer possibly complex rules with high pre-
cision on the training set. Note that the correlation heuristic is equivalent
to a χ2-statistic (Fürnkranz and Flach, 2005), which in turn is equivalent to
heuristic (d) of the previous section (Klösgen, 1992). We have not yet run
experiments with heuristics (a) and (c).

In total, 5409 theories with 48,603 rules were learned. For all rules and ances-
tors we recorded their precision on the test set, resulting in statistics for a total
of 114,375 rules. 13,399 rules did not cover any examples on the test set and
were ignored. Our reasons for this were that on the one hand we did not have
any training information for this rule (the test precision that we try to model is
undefined for these rules), and that on the other hand such rules do not do any
harm (they won’t have an impact on test set accuracy as they do not classify any
test example). Ignoring them seemed to be the most reasonable option for our
purposes. The large majority of these ignored rules (9,806 rules) covered only a
single positive and no negative examples on the training set. A total of 100,976
rules remained for the analysis.

Each rule is evaluated in the context of all previously learned rules, i.e., all
examples covered by previous rules are removed from the dataset. Thus, later
rules in a theory are learned from a smaller dataset than the first rules in the
theory. This procedure was also mirrored in the test set. In other words, we
assumed a decision list learning scenario, where an example is classified with the
prediction of the first rule that fires on the example. Thus, rule n only receives
examples (from both training or test sets) that are not covered by rules 1 . . . n−1.

From Local to Global Patterns 33

5.2 Fitting Search Heuristics

We fitted several 2-dimensional functions to these meta data, with the goal of
using them as a search heuristic inside the rule learner. We fitted the parameters
of the following three types of heuristics:

– a neural network (fully connected with a five-node hidden layer, fitted using
R’s nnet procedure (Venables and Ripley, 2002))

– the m-estimate (Cestnik, 1990; Clark and Boswell, 1991), resulting
in the function p+1.6065∗P/(P+N)

p+n+1.6065 (fitted using R’s nls procedure
(Venables and Ripley, 2002))

– the generalized m-heuristic, which re-interprets the prior probability in the
m-heuristic as a cost parameter (Fürnkranz and Flach, 2003), resulting in

p+0.785
p+n+2.7153

The residual sum-of-squares showed the best fit for the m-heuristic (rss =
7842.37), followed by the neural network (rss = 7897.1) and the generalized
m-heuristic (rss = 8029.34).

Table 2 shows the accuracy results (estimated by a 10-fold stratified cross-
validation) for all eight heuristics7 on the 27 data sets that were used for gen-
erating the meta data, as well as on 10 datasets that were not used in the
training phase. At the bottom of Table 2, we also show the average rule sizes for
each heuristic. As an independent benchmark, we also added the results of JRip,
Weka’s re-implementation of Ripper (Cohen, 1995), in two versions, without and
with pruning. The results exhibit a fairly large variance. There are cases where
the learned heuristics clearly outperform the five original heuristics (e.g., labor),
but there are also cases where they are outperformed by at least one of them.

Table 3 shows the p-value of a paired t-test, and the number of wins and
losses for each combination of a base heuristic with a meta-learned heuristic.
It can be seen that the meta-learned heuristics outperform Precision, Laplace,
and Accuracy. The differences for the neural network are not significant, but
the trained m-estimates outperform these heuristics in all but one case at the
1% significance level. On the other hand, weighted relative accuracy and corre-
lation, which correspond to heuristics (b) and (d) of Figure 5, are en par with
the meta-learned heuristics. These two differ from the others in that they are
symmetrical around the diagonal, i.e., they incorporate information about the
prior probability of the problem. Among the meta-learned heuristics, only the
m-heuristic takes this information into account.

In particular, the performance of the neural network is somewhat disap-
pointing. Although it is the most expressive model class (the only one that could
be trained to fit non-linear isometrics), the net did not surpass the results of its
linear competitors, not even at a significance level of 5%. Overfitting could be one

7 The neural network was implemented via a look-up table of the average prediction
values of 10 different networks for all combinations of values n ≤ 50 and p ≤ 50.
Precision was used for all larger values.

34 Johannes Fürnkranz

Table 2. Accuracy and number of learned rules for the five basic and three
learned heuristics on 10 new datasets. For comparison, we also show the result
of JRip without Pruning (-P) and JRip, and the average results of the algorithms
on the 27 datasets that were used for training.

Prec Lap Acc WRA Corr NNet MEst GenM JRip -P JRip

anneal 99.00 99.00 98.75 98.62 98.75 99.37 99.37 99.25 98.50 97.62
audiology 76.55 74.78 80.97 85.84 80.53 77.43 77.43 76.11 73.89 72.12
breast-cancer 68.88 67.48 72.73 69.93 66.78 68.88 65.03 70.63 73.43 72.38
cleveland-heart 72.61 70.96 73.60 72.28 76.90 72.28 72.61 74.92 77.56 79.54
contact-lenses 66.67 62.50 66.67 83.33 66.67 70.83 70.83 70.83 70.83 75.00
credit 84.69 84.90 84.90 86.73 83.88 85.51 83.27 83.67 85.31 85.71
glass 59.81 57.94 62.62 59.35 65.89 58.88 61.22 59.35 66.36 69.16
glass2 74.23 73.62 78.53 76.07 81.60 73.62 77.91 76.69 81.60 79.14
hepatitis 79.35 81.29 78.71 78.71 78.06 76.13 77.42 80.00 81.29 79.35
horse-colic 74.18 71.20 79.35 84.24 82.07 75.82 75.82 75.00 78.80 84.78
hypothyroid 97.91 98.17 98.13 98.32 98.77 98.58 98.42 98.70 98.70 99.11
iris 95.33 96.00 92.00 92.00 92.67 92.00 96.00 95.33 90.67 95.33
krkp 99.06 99.28 97.25 94.34 98.22 99.09 99.25 99.28 99.44 99.09
labor 87.72 87.72 85.96 82.46 87.72 89.47 91.23 89.47 84.21 77.19
lymphography 82.43 82.43 77.70 79.73 79.05 81.08 81.08 81.76 74.32 81.08
monk1 78.23 81.45 79.84 81.45 81.45 73.39 81.45 81.45 84.68 89.52
monk2 47.93 49.11 47.93 54.44 55.03 53.25 48.52 51.48 49.11 52.07
monk3 82.79 86.07 78.69 77.05 74.59 87.70 83.61 85.25 81.97 86.07
mushroom 100.00 100.00 98.23 96.45 98.23 100.00 100.00 100.00 100.00 100.00
sick-euthyroid 95.86 96.17 96.74 96.30 96.68 95.98 96.27 96.24 96.68 97.72
soybean 88.73 89.17 91.07 87.26 90.19 90.78 91.22 90.63 91.07 90.19
tic-tac-toe 97.29 97.29 88.41 71.40 83.09 97.29 97.08 97.29 97.18 97.18
titanic 78.33 78.33 78.33 77.60 77.78 78.33 78.33 78.33 78.33 78.24
vote 94.48 94.94 94.48 94.94 94.02 95.86 95.17 94.71 95.40 96.32
vote-1 88.97 87.13 88.51 89.66 90.11 89.20 87.36 89.20 88.28 88.97
vowel 50.10 50.71 47.37 63.03 70.81 54.14 55.35 52.22 74.75 72.63
wine 92.13 92.13 93.82 95.51 93.82 93.82 92.70 93.26 94.38 91.57

average (27 old) 81.97 81.84 81.90 82.48 83.09 82.55 82.74 83.00 83.95 84.71

balance-scale 73.44 73.12 68.80 66.88 77.76 71.84 72.32 72.80 80.32 81.28
breast-w 94.85 94.85 95.28 94.28 95.57 95.14 94.56 95.14 93.71 95.14
credit-g 69.10 70.00 67.00 72.50 69.60 67.70 68.10 69.20 73.30 70.80
diabetes 68.23 69.66 69.27 71.88 69.01 70.31 71.88 68.75 72.92 74.22
ionosphere 93.45 94.30 89.46 89.74 88.03 94.02 93.73 94.02 90.60 88.60
primary-tumor 33.04 32.74 29.50 35.40 35.40 33.63 34.81 33.33 39.23 38.94
segment 91.39 90.61 88.10 92.29 94.94 91.64 91.77 91.17 95.76 95.11
sonar 62.02 63.46 68.75 67.79 73.08 66.83 65.87 67.31 77.40 76.44
vehicle 69.39 67.14 62.65 60.52 68.44 65.48 71.63 67.49 67.02 68.68
zoo 84.16 85.15 90.10 92.08 90.10 89.11 90.10 90.10 87.13 86.14

average (10 new) 73.91 74.10 72.89 74.34 76.19 74.57 75.48 74.93 77.74 77.53

avg. # rules (27 old) 40.41 36.93 32.56 4.74 13.63 30.22 30.81 30.85 14.11 8.11
avg. # rules (10 new) 83.20 78.30 86.50 4.30 21.20 64.20 67.60 68.40 18.50 9.80

cause, the above-mentioned absence of the prior probability as an additional in-
put to the network another. Nevertheless, it is interesting to see how the network
fitted the data. Figure 8 shows the surface of the learned evaluation function.

From Local to Global Patterns 35

Table 3. Significance level of a paired t-test and number of wins and losses of
pairwise comparisons between the base heuristics and the meta-learned heuris-
tics.

NNet MEst GenM

Precision 0.929 (10/23) 0.996 (9/25) 0.9996 (7/26)
Laplace 0.913 (10/23) 0.991 (12/21) 0.999 (10/22)
Accuracy 0.939 (13/21) 0.985 (13/22) 0.996 (12/23)
WRA 0.541 (20/15) 0.679 (16/19) 0.695 (16/19)
Correlation 0.178 (21/15) 0.291 (20/15) 0.321 (20/15)

Fig. 8. Surface of a neural-net fit to the
evaluation data

Fig. 9. Isometrics of a neural-net fit to
the evaluation data

Note that the steep non-linear shape for low levels of N and P gradually shifts
towards an almost linear shape. This is not surprising, as the bias of the training
set precision can be expected to be much lower for rules with high coverage than
for rules with low coverage, because it is easier to fit a small sample by chance.
Figure 9 shows the isometrics of the learned neural network. It is quite obvious
that the shape is very similar to the shape of precision, which would be lines
rotating around the angle (0, 0). However, while the lines become increasingly
straight the farther they move away from the origin, they are quite non-linear
near the origin. In these regions, it might make a difference whether a rule is
evaluated with precision on the training set or with the predicted test set pre-
cision. Moreover, the isometrics do not meet in the origin, but seem to rotate
around some point below it. This is characteristic of the m-estimate, and related
heuristics. and may partly explain the good performance of such heuristics.

In general, our results are on average somewhat below those of JRip, although
there are numerous exceptions. This difference could have several reasons, among
them differences in implementation (all other algorithms differed only in the used
heuristics, whereas JRip is a completely independent implementation) and the

36 Johannes Fürnkranz

fact that our algorithms did not use any kind of noise handling. A somewhat
unexpected side result of our experiments is that the no pruning version of
JRip often outperforms its pruning counter-part (17 wins vs. 18 losses, with a
p-value of 0.86). Thus, it can be assumed that the lack of a pruning option does
not necessarily hamper the performance of our simple implementation of the
separate-and-conquer algorithm on this selection of datasets.

6 Conclusions

In our view, it is still an open question what functions should be used to evaluate
candidate rules for local pattern discovery. In this paper, we have used the frame-
work of coverage spaces to investigate a well-known family of evaluation metrics
for subgroup discovery, which trades off coverage and precision of a rule. Our
proposition is that for patterns with high coverage, coverage is of minor impor-
tance, and precision (or precision gain) should be used for evaluating the quality
of the found pattern. The main motivation for including coverage seems to be
the danger of overfitting. As an alternative to coverage-based overfitting avoid-
ance, we investigated the possibility of meta-learning a function for predicting
the “true” value of the precision of a rule. Our empirical results show that meta-
learning improves over several commonly used evaluation metrics. However, two
of the measures that were originally proposed for subgroup discovery were en
par with the meta-learned heuristics. We take this as evidence that in future
work, we should (a) concentrate on investigating the quality of this family of
subgroup discovery measures for inductive rule learning, and (b) repeat some of
our meta-learning experiments with this function family. In particular, we plan
to use a meta-learning approach like the one reported in this paper for fitting
the parameter w of the function family cwg. A key difference is that these heuris-
tics (like the m-estimate, which also performed quite well) take the prior class
distribution into account. We expect that including this information as a third
parameter will also improve the results of the neural network meta-heuristic. In
effect, this means switching from meta-learning in conventional 2d-ROC space
to meta-learning in 3d-ROC space (Flach, 2003).

Acknowledgments

I would like to thank the participants of the Dagstuhl workshop on Local Patterns for

enlightening discussions on the subjects of this paper. I would also like to thank the

many people that make great software freely available. Weka, R, Perl and Cygwin were

invaluable for this work.

References

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of
association rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 307–328.
AAAI Press, 1995.

From Local to Global Patterns 37

B. Cestnik. Estimating probabilities: A crucial task in Machine Learning. In L. Aiello,
editor, Proceedings of the 9th European Conference on Artificial Intelligence (ECAI-
90), pages 147–150, Stockholm, Sweden, 1990. Pitman.

P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In
Proceedings of the 5th European Working Session on Learning (EWSL-91), pages
151–163, Porto, Portugal, 1991. Springer-Verlag.

W. W. Cohen. Fast effective rule induction. In A. Prieditis and S. Russell, editors,
Proceedings of the 12th International Conference on Machine Learning (ML-95),
pages 115–123, Lake Tahoe, CA, 1995. Morgan Kaufmann.

W. W. Cohen and Y. Singer. A simple, fast, and effective rule learner. In Proceedings of
the 16th National Conference on Artificial Intelligence (AAAI-99), pages 335–342,
Menlo Park, CA, 1999. AAAI/MIT Press.

T. G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli,
editors, First International Workshop on Multiple Classifier Systems, pages 1–15.
Springer-Verlag, 2000.

C. Ferri, P. Flach, and J. Hernández. Delegating classifiers. In R. Greiner and D. Schu-
urmans, editors, Proceedings of the 21st International Conference on Machine Learn-
ing (ICML-04), pages 289–296, Sydney, Australia, 2004. Omnipress.

P. A. Flach. The geometry of ROC space: Using ROC isometrics to understand machine
learning metrics. In T. Fawcett and N. Mishra, editors, Proceedings of the 20th Inter-
national Conference on Machine Learning (ICML-03), pages 194–201, Washington,
DC, 2003. AAAI Press.

E. Frank and I. H. Witten. Generating accurate rule sets without global optimization.
In J. Shavlik, editor, Proceedings of the 15th International Conference on Machine
Learning (ICML-98), pages 144–151, Madison, Wisconsin, 1998. Morgan Kaufmann.

J. Fürnkranz. Fossil: A robust relational learner. In F. Bergadano and L. De Raedt,
editors, Proceedings of the 7th European Conference on Machine Learning (ECML-
94), pages 122–137, Catania, Italy, 1994. Springer-Verlag.

J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13
(1):3–54, February 1999.

J. Fürnkranz. Modeling rule precision. In J. Fürnkranz, editor, Proceedings of the
ECML/PKDD-04 Workshop on Advances in Inductive Rule Learning, pages 30–45,
Pisa, Italy, 2004a.

J. Fürnkranz. Modeling rule precision. In A. Abecker, S. Bickel, U. Brefeld, I. Drost,
N. Henze, O. Herden, M. Minor, T. Scheffer, L. Stojanovic, and S. Weibelzahl,
editors, Lernen – Wissensentdeckung — Adaptivität. Proceedings of the LWA-04
Workshops, pages 147–154, Humboldt-Universität zu Berlin, 2004b.

J. Fürnkranz and P. Flach. An analysis of rule evaluation metrics. In T. Fawcett and
N. Mishra, editors, Proceedings of the 20th International Conference on Machine
Learning (ICML-03), pages 202–209, Washington, DC, 2003. AAAI Press.

J. Fürnkranz and P. Flach. ROC ’n’ rule learning – Towards a better understanding
of covering algorithms. Machine Learning 58(1):39–77, 2005.

D. Gamberger and N. Lavrač. Confirmation rule sets. In D. A. Zighed, J. Komorowski,
and J. Žytkow, editors, Proceedings of the 4th European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD-00), volume 1910 of Lecture Notes in
Artificial Intelligence, pages 34–43, Lyon, France, September 2000. Springer, Berlin.

J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule mining –
a general survey and comparison. SIGKDD explorations, 2(1):58–64, June 2000.

R. Holte, L. Acker, and B. Porter. Concept learning and the problem of small disjuncts.
In Proceedings of the 11th International Joint Conference on Artificial Intelligence
(IJCAI-89), pages 813–818, Detroit, MI, 1989. Morgan Kaufmann.

38 Johannes Fürnkranz

W. Klösgen. Problems for knowledge discovery in databases and their treatment in
the statistics interpreter EXPLORA. International Journal of Intelligent Systems,
7(7):649–673, 1992.

W. Klösgen. Explora: A multipattern and multistrategy discovery assistant. In U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, chapter 10, pages 249–271. AAAI Press,
1996.

N. Lavrač, P. Flach, and B. Zupan. Rule evaluation measures: A unifying view. In
S. Džeroski and P. Flach, editors, Proceedings of the 9th International Workshop on
Inductive Logic Programming (ILP-99), pages 174–185. Springer-Verlag, 1999.

N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with CN2-SD.
Journal of Machine Learning Research, 5:153–188, 2004.

J. A. Major and J. J. Mangano. Selecting among rules induced from a hurricane
database. Journal of Intelligent Information Systems, 4(1):39–52, 1995.

G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In
G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases,
pages 229–248. MIT Press, 1991.

T. Scheffer and S. Wrobel. Finding the most interesting patterns in a database quickly
by using sequential sampling. Journal of Machine Learning Research, 3:833–862,
2002.

P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for
association patterns. In Proceedings of the 8th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD-02), pages 32–41, Edmonton,
Alberta, 2002.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, fourth
edition, 2002.

S. M. Weiss and N. Indurkhya. Lightweight rule induction. In P. Langley, editor, Pro-
ceedings of the 17th International Conference on Machine Learning (ICML-2000),
pages 1135–1142, Stanford, CA, 2000.

S. Wrobel. An algorithm for multi-relational discovery of subgroups. In Proceedings
of the First European Symposion on Principles of Data Mining and Knowledge Dis-
covery (PKDD-97), pages 78–87, Berlin, 1997. Springer-Verlag.

Pattern Discovery Tools for Detecting Cheating

in Student Coursework

David J. Hand, Niall M. Adams, and Nick A. Heard

Department of Mathematics
Imperial College London

{d.j.hand, n.adams, n.heard}@imperial.ac.uk

Abstract. Students sometimes cheat. In particular, they sometimes copy
coursework assignments from each other. Such copying is occasionally de-
tected by the markers, since the copied script and the original will be
unusually similar. However, one cannot rely on such subjective assess-
ment – perhaps there are many scripts or perhaps the student has sought
to disguise the copying by changing words or other aspects of the answers.
We describe an attempt to develop a pattern discovery method for de-
tecting cheating, based on measures of the similarities between scripts,
where similarity is defined in syntactic rather than semantic terms. This
problem differs from many other pattern discovery problems because the
peaks will typically be very low: normally only one or two cheating stu-
dents will copy from any given other student.

1 Introduction

The word ‘pattern’ is used in this paper to describe an unexpected local peak
in a probability function. Evidence for such an anomaly will come from a corre-
sponding anomaly in a data set – that is, a local, unusually dense, accumulation
of data points relative to some background model (1). This type of pattern arises
in various contexts. The context with which this paper is concerned is that of
assessing students’ coursework, and we are concerned with detecting copying,
which manifests itself in some scripts being unexpectedly similar. That is, the
data points representing the copies are closer than expected, in some appropriate
data space.

Pattern discovery involves two complementary aspects. On the one hand,
it is necessary to identify potential patterns: to find the unusually high local
density of data points. And, on the other, it is necessary to decide whether that
‘unusually high local density’ is such as to be statistically significant: with large
data sets one must expect spurious congregations of data points to happen by
chance, and one would like some measure of this probability.

The literature on pattern discovery has tended to focus on the first of these
aspects. This is perhaps not surprising. For various reasons (discussed, for exam-
ple, in (2)), most of the work in pattern discovery has occurred in computational
disciplines. And computational disciplines are concerned with algorithms. Once
a potential pattern has been found one can, at least in principle, hand things over

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 39–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

40 David J. Hand, Niall M. Adams, and Nick A. Heard

to a domain expert to decide whether that potential pattern is real, and, if so,
whether it is of any consequence. That this is often only possible in principle, and
not in practice, is illustrated by the fact that such pattern discovery algorithms
can easily throw up many thousands of potential patterns. It is unrealistic to ex-
pect any expert to sift through these, giving proper critical thought to each. The
alternative, of setting the threshold for detection so that only the most striking
data anomalies are flagged, is likely to indicate only those anomalies which are
already well known. The problems with which this paper is concerned involve
relatively small data sets, so that algorithmic efficiency is not an important issue.

The literature on the second aspect is much sparser and again there are
sound reasons for this. This second aspect is fundamentally inferential, so that
one might expect it to have been explored and developed within the primary
discipline concerned with inference, namely statistics. However, as a discipline
statistics has its roots in the first half of the twentieth century, prior to the
development of computers. This restricted the size of data sets which could be
handled, and pattern discovery is much less feasible in small data sets. For exam-
ple, with a million data points, a small pattern (0.01% of the data, say) involves
100 points – a perfectly respectable number. However, with 1000 data points,
0.01% of the data involves less than one point. The chance of detecting such a
structure as an anomaly is very small. Despite this, in recent years some formal
inferential methods have been developed, and these are discussed in Section 3.
As we have already noted, the particular type of pattern discovery addressed in
this paper is rather unusual – it involves data sets which typically have relatively
few cases, though they may have large dimensionality. This last factor may have
deterred detailed statistical investigation in the past.

Cheating by a minority of dishonest students is a perennial issue. It is perhaps
more prevalent in coursework rather than examinations or tests, simply because
it is easier to perpetrate and more difficult to detect. In recent years, with the
advent of the world wide web, the particular type of cheating called plagiarism,
in which students pass off others’ work as their own, has become especially
important, because it is now so easy for dishonest students to locate material
on the web and copy it. Because of this, search algorithms have been developed
which trawl the web and compare a student’s work with the results of this
trawl. Plagiarism is a particular problem with open-ended questions – ‘write an
essay on X’, or ‘describe the major influences on Y’, for example. In contrast,
in closed questions, copying is perhaps a more critical form of cheating. In this
paper we are concerned with mathematical questions, which might be of the
form ‘calculate the probability of some event’, ‘find the form of a function’,
or ‘prove that some relationship holds’, for example. Here students might be
tempted simply to copy a solution from other students.

If there are not too many scripts, someone marking them may detect what
seems to be a striking degree of similarity between scripts, and suspect collusion
or copying. However, such suspicions, while serving as a basis for close monitor-
ing of the students in the future, can hardly form a solid foundation for action.
Something more formal is needed, something which can actually give a proba-

Pattern Discovery Tools for Detecting Cheating in Student Coursework 41

bility to the similarity, in the manner of a DNA test in crime detection. This
pattern discovery problem has some rather unusual features. First, of course,
it is not simply a pattern matching problem, as is DNA matching, in which
one has the specimen found at the scene of the crime and the aim is to find a
match in a database. It is a pattern discovery problem, which involves calcu-
lating and making inferences on all small clusters of objects. This leads to a
combinatorially more complex problem (instead of matching 1 with n, yielding
n possible matches, we must examine nCr possible matches if we are seeking
possible clusters of size r from a dataset of size n). Secondly, unlike most other
pattern discovery problems, our ‘local peaks’ are likely to be represented by only
a very few data points. If we had a class of 100, it may be quite likely that two
friends have colluded, but it is unlikely that 20 have colluded. In a more standard
pattern discovery problem, we will also be interested in the case of 20 similar
points – so that we have to consider arbitrary r in the nCr above. In fact, for
our problem, we can restrict ourselves to searching for pairs of scripts which are
strikingly similar.

In what follows, Section 2 describes the background and the data we have
been working with. Section 3 discusses the inferential issues which are central to
this problem, and describes our solutions. Section 4 presents our results. Finally,
Section 5 draws some conclusions.

2 The Data

Our work in this area was motivated by suspiciously similar scripts in math-
ematics and statistics coursework. Appendix 1 shows a question and solution
similar to those which motivated this work, and each script would have involved
several such questions – say ten. All students will have answered, or attempted
to answer, the same questions.

In order to apply formal inferential methods, it is necessary to represent the
answers in a convenient representation. The most basic representation is the
total mark a student obtains for the work. However, it is obvious that this does
not yield a fine enough gradation for the data space to permit effective detection
of cheating: with a total of 100 marks, and 100 students, we should expect many
pairs of students to have very similar or even identical scores. Moreover, the
chance of at least one pair having very close scores is very high (indeed, with 100
marks and 102 students, this probability is 1). It is necessary to expand the data
space, by finding more detailed descriptions of the mark patterns. For example,
with ten questions, each with ten marks, one might use the 10-component mark
vector (this has 1110 possible configurations, instead of merely 101). This idea
can be taken further, down to the level of the number of marks awarded to each
part of each question. However, the parts of each question are likely to have
only a few marks each (after all, if each question has only 10 marks, there is not
much flexibility). Overall, this limits the fineness of the gradation which can be
achieved in practice, and this, in turn (see Section 3) limits the precision of the
inferences which can be made.

42 David J. Hand, Niall M. Adams, and Nick A. Heard

Most of the work on detecting plagiarism, and, indeed, other bibliometric
work, has been based on matching occurrences of words and word counts. How-
ever, some work has been based on structural markers other than semantic terms.
For example, in text, the structural markers might be punctuation marks. A re-
cent example illustrates how effective this can be:

‘In February 2003 a Cambridge politics lecturer named Glen Rangwala
received a copy of the British government’s most recent dossier on Iraq.
He quickly recognised in it the wholesale copying of a twelve-year-old the-
sis by American doctoral student Ibrahim al-Marashi, “reproduced word
for word, misplaced comma for misplaced comma”. .. Rangwala noticed
there were some changes to the original, such as the word “terrorists”
substituted for “opposition groups”, but otherwise much of it was identi-
cal. In publishing his findings, he wrote:
Even the typographical errors and anomalous uses of grammar are in-
corporated into the Downing Street document. For example, Marashi had
written:
“Saddam appointed, Sabir ‘Abd al-‘Aziz al-Duri as head”...
Note the misplaced comma. The UK officials who used Marashi’s text
hadn’t. Thus, on page 13, the British dossier incorporates the same mis-
placed comma:
“Saddam appointed, Sabir ‘Abd al-‘Aziz al-Duri as head”...’

Truss (3, p. 202)

We explored a similar structural description of the scripts. Many of the terms
in a mathematical argument are arbitrary: one might use x instead of y, or
α instead of β, for example. But other terms are universal: +, -, and =, in
particular, cannot be written in other forms. Note that the other arithmetic
operations of × and ÷ do have alternative forms. Moreover, in general, the
solutions to our questions had the scope for multiple usages of +, -, and =. This
meant that a much finer gradation was possible if we coded the solutions in
terms of these syntactic attributes. An extract from our data matrix is given in
Appendix 2.

We suspect that students who attempt to disguise the fact that they have
copied are unlikely to go to the extent of substantially altering the occurrences
of the syntactic +, -, and = terms, so that we believe the counts of these will
serve as good descriptors for our purposes. There were 50 students in the class
and, using these syntactic counts as descriptors, the data space was spanned
by 60 component feature vectors. A priori, this might be expected to give sub-
stantial scope for inferential methods: in such a high-dimensional space identical
responses might be unlikely to occur by chance.

Pattern Discovery Tools for Detecting Cheating in Student Coursework 43

3 Chance Similarity?

3.1 Scan Statistics

The ideas and tools of scan statistics (4) provide a basis on which we can decide
whether an apparent pattern, suggested by an unexpected confluence of data
points, represents a real structure in the underlying distribution. Unfortunately,
this is a relatively new area, and most of the work has focussed on the one or two
dimensional cases. This subsection summarises the ideas of scan statistics and
the next explores approaches which may be suitable for our particular problem.

Suppose that we observe values of a single variable. A natural question is
whether there is a tendency for certain values to occur more often than might
be expected according to some background model. For example, if it is thought
that the values should be uniformly distributed, is there a tendency for values
to group, or if the values are generated by a point process, can it be modelled by
a Poisson process, or is there evidence of clumping? Real examples include the
possibility of illness clustering in time, of faults clustering because of a common
cause, or of police deaths in the line of duty. An appropriate statistic to detect
such clustering can be defined in terms of a small window, moving over the
data space, with a count being made of the number of events it covers at each
position. Of particular interest is the distribution of the maximum number of
points covered by a window of given width, or the distribution of the width of
the window required to cover a given number of points.

As a simple example, consider a sequence of N independent binary random
variables, Xi, i = 1, ..., N . Let our null hypothesis be that these all have the same
probability of taking value 1, so that H0 : Xi ∼ Bern (p0) , i = 1, 2..., N , where
Bern (p) is the Bernoulli distribution with parameter p. Let our alternative
hypothesis be H1 : Xi ∼ Bern (p1) for some i = s, s + 1..., s + w − 1, and
Xi ∼ Bern (p0) otherwise. Now define

Yt =
t+w−1∑

i=t

Xi.

Then the scan statistic is

Sw = max
1≤t≤N−w+1

Yt.

Analogously, we will be concerned with the distribution of Wk, the shortest time
period containing k events. Note that

P (Wk > w) = P (Sw < k) .

In general, the distribution of Wk or Sw is difficult to find because of the de-
pendencies involved: each window overlaps several of those before and after. The

44 David J. Hand, Niall M. Adams, and Nick A. Heard

difficulty is illustrated by the following simple example, involving N observations
from a uniform distribution on the unit interval:

Xi, i = 1, ..., N iid ∼ f (x) =
{

x 0 ≤ x ≤ 1
0 else

Denote the order statistics by X(i) and let Wk = min
1≤i≤N−k+1

[
X(i+k−1) − X(i)

]
.

Now,

P (Wk > w) = P

(
min

1≤i≤N−k+1

[
X(i+k−1) − X(i)

]
> w

)
= P

(⋂N−k+1
i=1

(
X(i+k−1) − X(i) > w

))
so that, to determine the distribution of Wk, all we have to do is to integrate
the distribution for order statistics from a uniform distribution, N ! for X(1) ≤
X(2) ≤ ... ≤ X(N), over the domain

(
X(i+k−1) − X(i) > w

)
for i = 1, 2, ..., N −

k +1. Unfortunately, although the argument being integrated is straightforward
enough, the region of integration is typically very complicated, making explicit
integration impracticable except in certain special cases (one of which we discuss
below).

Because of this difficulty, various approximations have been developed, two
of which we describe below.

Product approximations are based on decomposing

P (Wk > w) = P

(⋂N−k+1

i=1

(
X(i+k−1) − X(i) > w

))
in terms of a Markov chain and approximating each term of this chain. For
example, suppose we have a point process on the interval [0, T), and define a
moving window [t, t + w), 0 ≤ t ≤ T − w. For simplicity, let T = Lw, L an
integer, and define QV to be the probability that there is no window of length
w in V which contains as many as k points.

Let Ei denote the event that the interval [(i − 1)w, (i + 1)w] does not include
a window of length w containing as many as k points.

Then

QT = P (E1)P (E2|E1)P (E3|E2 ∩ E1) ...P

(
EL−1|

⋂L−2

i=1
Ei

)
If we now assume that there are no long range relationship, then

P (Ei|Ei−1 ∩ ...) = P (Ei|Ei−1)

If we also assume stationarity, then, further,

P (Ei|Ei−1) = P (Ej |Ej−1) = P (Ej ∩ Ej−1)/P (Ej−1) = Q3w/Q2w,

Pattern Discovery Tools for Detecting Cheating in Student Coursework 45

from which

QT ≈ Q2w

(
Q3w

Q2w

)T/w−2

Better approximations can be made by increasing the range of the dependence,
using for example, P (Ei|Ei−1 ∩ Ei−2 ∩ ...) = P (Ei|Ei−1 ∩ Ei−2).

As a second example, consider a Poisson process {Xt, t ≥ 0} with intensity λ.
Define the scanning process {Yt (w) , t ≥ 0} with Yt = Xt+w−Xt. Then the scan
statistic with window w is Sw = Sw (λ, T) = max

0≤t≤T−w
Yt (w). Without loss of

generality, we can work with T ′ = T /w and λ′ = λw. Now Y is an integer-valued
stationary process with jumps ±1. Let Mk be the number of times Y hits k in
interval (0, T − w). Then

P (Wk > w) = P (Sw < k)
= P (Y0 < k ∩ Mk = 0)
≈ P (Y0 < k)P (Mk = 0)

= Fp (k − 1; λ′)P (Mk = 0)

where Fp (k; μ) is the cdf of a Poisson distribution with mean μ
Using properties of Poisson processes, and where p (k; μ) is the pmf of this

Poisson distribution, we obtain

P (Wk > w) ≈ Fp (k − 1; λ′) exp
{
−
(

1 − λ′

k

)
λ′ (T ′ − 1) p (k − 1; λ′)

}

3.2 Applications in Cheating

As described above, it will be sufficient for us to detect pairs of scripts which
are improbably similar. Our initial attempts were based on summarising the
scripts by means of single values. These could be overall marks, or (and, as we
will see, this is better) could be sums of the values derived by the syntactic
description above. For convenience in this section, we shall call this overall score
the student’s score. We wish to know how probable it is that we should obtain
a difference between the two closest scores as close or closer than that observed.
If this probability is very small, we are justified in being suspicious about the
two close scores. That is, we want to find

P (W2 ≤ w) = 1 − P (W2 > w)

With N students, P (W2 > w) is given by the integral of N ! over the region
defined by

0 ≤ x(1) ≤ x(2) ≤ ... ≤ x(N) ≤ 1 and x(i+1) − x(i) > w for i = 1, ..., N − 1. It
is not difficult to show that

P (W2 > w) =

1∫
(N−1)w

xN−1∫
(N−2)w

...

x4−w∫
2w

x3−w∫
w

x2−w∫
0

N !dx1dx2dx3...dxN

46 David J. Hand, Niall M. Adams, and Nick A. Heard

which, by the change of variables

y1 = x1

y2 = x2 − w
y3 = x3 − w
.................
yN = xN − (N − 1) w

can be written as

1−(N−1)w∫
0

yN∫
0

yN−1∫
0

...

y2∫
0

N !dy1dy2dy3...dyN

which evaluates to

P (W2 > w) =
{
{1 − (N − 1)w}N

for w ≤ (N − 1)−1

0 for w > (N − 1)−1 (1)

The w > (N − 1)−1 case is uninteresting, of course.
The difficulty of using this in practice is illustrated by the following examples.

Suppose that the overall score can take values in the range 0 to r. Then, under
the null hypothesis of independent uniform sampling from 0, ..., r the probability
that all N scores differ is (r + 1)!

/
(r + 1)N (r − N + 1)! which is relatively small

unless r is very large relative to N . For example, with N = 20 and r = 99
this probability is 0.13. In order to reduce it to a value which would give one
confidence that something untoward had occurred one would need to increase
the range of possible scores substantially. Moreover, this calculation has been
based on assuming a uniform distribution over the range of the scores. Since, in
fact, the scores are likely to follow a non-uniform distribution, the situation is
even worse than these calculations suggest.

Using these figures of N = 20 and r = 99 in expression (1) above and using
the uniform approximation to the distribution of scores over the range 0, ..., 99
gives P (W2 ≤ 0.02) = 0.999993. That is, we are almost certain to observe two
scores within 2 points of each other if we have 20 students, each scoring in the
range 0, ..., 99. Figure 1 shows a plot of the value of r, the range of the possible
scores needed, in order that a difference of 2 points would arise with probability
0.01, for given values of N , the number of students in the class, making the
conservative assumption of a uniform score distribution.

Approaches such as this, in which we calculate an ‘overall score’ for the stu-
dents, are sacrificing information: they are reducing the vector of values to a
single summary statistic. This suggests that we can do better. In particular, for
example, we could examine the distances between the vectors of student scores,
not in terms of a single unidimensional summary (the overall score) but using a
formal distance measure. We could then calculate the probability of observing a
minimum distance smaller than that observed. Unfortunately, however, we can-
not use simple order statistics on the distances for this, because such distances

Pattern Discovery Tools for Detecting Cheating in Student Coursework 47

N

r

0 20 40 60 80 100

0
5*1

0^5
10

^6
1.5

*10
^6

2*1
0^6

Fig. 1. Range of marks, r, needed to ensure that a difference of 2 marks will
occur with a probability of less than 0.01 (top curve), 0.02, and 0.05 (bottom
curve) when there are N students.

are not independent. Moreover, derivations will be difficult because the under-
lying distribution which we should use as the null hypothesis – the distribution
we assume for the distances if there is no grouping arising from cheating – is
generally unknown and certainly not uniform. For these reasons, Monte Carlo
methods seem to be the best approach. These are based on fitting a paramet-
ric model to the joint observed distribution of student’s vector of marks, and
then generating new data sets, of the same size, from this model. The relevant
probability is the proportion of these data sets which have a smallest pairwise
distance as small or smaller than that actually observed. The model does not
have to be too accurate, since slight inaccuracies will not have a dramatic effect
on the distribution of inter-point distances. Note, however, that one should try
to avoid fitting the distribution of each component of the mark vector as inde-
pendent components: the likely correlation between the components will mean
that a model which assumes independence will underestimate the probability of
achieving small pairwise distances. That is, an independence model is likely to
lead to exaggerating the apparent extremeness of observed small distances.

Our aim, then, is to generate samples of size 50 from the same 60-dimensional
multivariate discrete distribution as the observed data, and record the propor-
tion of these samples which have a minimum interpoint distance less than that
observed in the actual data. To do this, we need a model for the ‘distribution
of the observed data’. In principle, such a model could be found by fitting a
log-linear model to the data, but in practice, with only 50 data points and with
60 variables this would be impracticable. As we have already noted, it would also
be unwise to go to the other extreme, and model the variables as independent,

48 David J. Hand, Niall M. Adams, and Nick A. Heard

partly because it is unlikely to be the case, and partly because it would lead to
minimum interpoint distances larger than would be the case if the proper depen-
dence was used. We therefore decided to use a compromise which matched the
univariate marginals and the bivariate correlations of the observed data. Note
that this is not a log-linear model because it does not model the discrete bivariate
distributions (again there is insufficient data), but only their correlations.

Even this strategy is not straightforward. Generating discrete correlated data
is difficult, and generating continuous data is likely to lead to too few small values
of the minimum distance (with discrete data distances of zero can occur, but
with continuous data they cannot). We therefore adopted an indirect strategy,
as follows:

1. Generate data with the observed discrete univariate marginals indepen-
dently, and compute the distribution of minimum distances, m1. (In fact,
we also experimented with applying a small amount of smoothing, but it
made very little difference to the final result.)

2. Generate data from independent normal distributions, with means and vari-
ances matching those of the observed variables. Discretise these data to the
ranges of the observed variables. Calculate the mean minimum distance, m̄2.

3. As (2), but with correlated multivariate normal data (correlated multivariate
normal data are easy to generate), matching the observed correlations. Again
discretise the data and again calculate the mean minimum distance, m̄3.

4. Adjust m1 to take account of the correlations, yielding m′
1 = m1 × m̄2/m̄3.

This strategy is clearly fairly crude, and there are obvious improvements
which could be made. However, it is worth bearing in mind that the overall
model does not have to be too accurate – the distribution of minimum distances
is unlikely to be substantially affected by small differences.

4 Results

Ten of the 60 columns of data showed constant zeros, so we dropped these from
our analysis, leaving 50 records, each measured on 50 variables. The correction
ratio m̄2/m̄3 was 0.845. Applying this value to the observed minimum distances
in 5000 simulations of 50 data points led to the distribution shown in Figure 2.
The arrow to the left of the diagram shows the minimum distance in the real
data. The probability of observing such an extreme value from this distribution
is vanishingly small. We are right to be highly suspicious of the two scripts which
led to this distance.

5 Conclusion

With the advent of the internet, plagiarism, in which students download essays
and coursework materials from the web, passing it off as their own work, has

Pattern Discovery Tools for Detecting Cheating in Student Coursework 49

2 4 6 8 10 12

0.0
0.1

0.2
0.3

Fig. 2. Simulated minimum distance distribution, and observed (arrow) mini-
mum distance in the real data.

generated increasing concern. But simple copying of coursework from other stu-
dents is also an issue. Traditionally, detecting copying has relied on the markers,
but this is unreliable and subjective. It is unreliable because, with n (n − 1)/2
pairs of scripts amongst n students, it is all too easy to miss a very similar
pair: unless they are marked consecutively, one is unlikely to notice similarities,
perhaps especially because copied scripts may well be correct scripts (it seems
rather pointless copying a script one cannot be sure is fairly good). It is subjec-
tive because the extent of ‘similarity’ will lie in the mind of the marker. What
is needed is some more formal approach, and in particular an approach which
allows one to attach a measure of probability to the similarity between scripts.
In this paper we have described an attempt to construct just such an approach
and measure. We have constructed this approach in the context of a broader
theory of pattern discovery which we have been developing (Hand and Bolton,
2004).

The analysis presented in this paper is far from perfect. Perhaps its major
shortcoming arises from the difficulty of generating the distribution of minimum
distances. Our approach is crude, and could doubtless be improved using the
tools of modern Monte Carlo methods – although it is not straightforward be-
cause of the discrete nature and high dimensionality (relative to a small sample
size) of the data. In any case, we believe that the model from which the simu-
lated minimum distances are generated need not be too accurate a model of the
underlying distribution (under the null hypothesis of no copying). We believe
that copying is likely to result in a very small similarity measure – far out in the
tail of the distribution. This was certainly the case in the example we gave.

Two other aspects of the method we have described are worth stressing.
The first is the need to produce a very large potential data space. Simple use

50 David J. Hand, Niall M. Adams, and Nick A. Heard

of total marks is unlikely to be successful because it is very likely that two
honest students will have very similar scores purely by chance. Various ways of
increasing the size of this space could be used, including using the individual
marks of questions and parts of questions. This is certainly worth considering.
However, we also proposed, and explored in this paper, the use of syntactic
measures to describe the way the students wrote their solutions. This is the
second aspect of our method which we would like to stress. It seems to us that
copying students would be unlikely to go to the trouble of disguising universal
syntactic markers.

Acknowledgments: The work of Nick Heard described in this paper was funded
by the Wellcome Trust, grant number 065822.

Appendix

1 Example of a Coursework Question and Solution

Question:

1. For each of the functions, f , below, find the values of c which make the
functions legitimate probability density functions.

a. f (x) =
{

c, a ≤ x ≤ b
0, otherwise

b. f (x) =
{

ce−λx, x > 0
0, otherwise

c. f (x) = c exp
[
− (x−μ)2

2σ2

]
2. What are the mean values of the distributions given in question 1?
3. What are the median values of the distributions given in question 1?
4. A user of the internet normally uses search engine A, but is thinking of

switching to search engine B.
a. It is known that the times taken to locate particular items of information

on the internet vary from search to search, and that the distribution of
these times is right skewed. Draw a sketch indicating the shape of such
a distribution

b. The log transforms of the search times are known to follow a normal
distribution fairly closely. The mean log(time) for search engine A to
locate items is known to be 1.5. A user is considering switching to search
engine B, and has collected the information below, which shows the
log(time) values for 10 randomly chosen searches. Compute the mean
and standard deviation of the log(times) in the sample.

2.6 2.2 1.5 1.4 1.4 1.2 1.8 1.1 1.0 2.9

Pattern Discovery Tools for Detecting Cheating in Student Coursework 51

c. Using appropriate tables from the formula sheet, carry out a test of the
hypothesis that the log(time) values using engine B are drawn from a
distribution with a mean of 1.5, at the 5% level. In your answer, clearly
state which distribution you use for the test statistic, and write down
any formulae you use to compute the test statistic.

d. What recommendation would you make to the user?

Solution:

1. a. This is a uniform distribution, with constant height. Since
∫

f(x) dx = 1,
we must have 1 =

∫ b

a c dx = c
b−a , so that c = 1/(b − a).

b. We must have 1 =
∫∞
0

ce−λx dx = c
∫∞
0

e−λx dx = c
[
e−λx/(−λ)

]∞
0

= c
λ ,

so that c = λ.
c. c = 1/(σ

√
2 ∗ π) by recognising that the distribution is normal.

2. a. mean = (b + a)/2 either by a symmetry argument, or by integration
b. mean = 1/λ either from the formula sheet, or by integration
c. mean = μ from the formula sheet or memory.

3. a. median = (b + a)/2 by a symmetry argument

b. median = log 2
λ found from

m∫
0

λe−λxdx = 1
2 , by integration, or from 1 −

e−λx = 1/2 from the formula sheet.
c. median =μ, by symmetry

4. a. Any sketch of a right-skewed distribution will do.
b.
∑

x = 17.1 x̄ = 1.71 ∑
x2 = 33.07

V ar =
∑

x2

n − 1
− nx̄2

n − 1
=

33.07
9

− 10 × 1.712

9
= 0.425

So sd = 0.652
OR

∑
(x − x̄)2 =

0.7921+0.2401+0.0441+0.0961+0.0961+
0.2601+0.0081+0.3721+0.5041+1.4161
= 3.829

So that sd =
√∑

(x − x̄)2
/

9 =
√

3.829/9 = 0.652
c.

t =
x̄ − μ

s/
√

n
=

1.71 − 1.5
0.652

/√
10

=
0.21
0.206

= 1.02

From the t-tables in the formula sheet, referring to the row for 10-1 =
9 degrees of freedom, we see that this is less than 2.26 and hence is not
significant at the 5% level. We have no reason for supposing that search
engine B has log(time) values different from that for search engine A

d. This test provides no reason to change search engines.

52 David J. Hand, Niall M. Adams, and Nick A. Heard

2 Extract from the Data Matrix

Rows represent students (in fact there were 50) and columns represent the counts
of +, -, and = in each part of each question, yielding 60 columns in all.

12 15 1 1 2 4 0 8
12 5 1 1 6 4 0 10
9 13 4 1 1 3 0 8

12 15 1 1 5 4 0 8
2 4 2 0 8 4 0 10
2 2 1 0 3 2 0 3

10 14 0 2 6 0 0 0
1 3 0 0 0 0 0 0
0 0 0 0 0 0 0 0
9 12 6 0 7 2 0 3
7 11 2 0 10 2 0 4

16 19 2 0 10 4 0 10
9 5 4 0 7 6 0 12

24 6 0 0 0 0 0 0
7 5 1 0 4 4 0 1

References

[1] Hand D.J., Adams N.M., Bolton R.J. (eds.): Pattern Detection and Discovery.
(2002) Springer

[2] Hand D.J., Bolton R.J. : Pattern discovery and detection: a unified statistical
methodology. Journal of Applied Statistics, 31, 885-924.

[3] Truss L. : Eats, Shoots, and Leaves: the Zero Tolerance Approach to Punctuation.
(2003) London: Hatton Books

[4] Glaz J., Naus J., Wallenstein S.: Scan Statistics. (2001) New York: Springer

Local Pattern Detection and Clustering

Are There Substantive Differences?

Frank Höppner

University of Applied Sciences Braunschweig/Wolfenbüttel
Robert Koch Platz 10-14

D-38440 Wolfsburg, Germany

Abstract. The starting point of this work is the definition of local pat-
tern detection given in [10] as the unsupervised detection of local re-
gions with anomalously high data density, which represent real underly-
ing phenomena. We discuss some aspects of this definition and examine
the differences between clustering and pattern detection (if any), before
we investigate how to utilize clustering algorithms for pattern detection.
A modification of an existing clustering algorithm is proposed to iden-
tify local patterns that are flagged as being significant according to a
statistical test.

1 Introduction

Knowledge discovery in databases (KDD) aims at detecting valid, novel, poten-
tially useful, and ultimately understandable patterns in data [8]. Many tools in
KDD aim at a global characterization of the data, such as decision trees or clus-
tering partitions. The more recent technique of association rule mining, however,
investigates into more local phenomena that do not characterize the database
as a whole but only a small subpopulation. Usually, association rule mining is
considered as the most prominent approach to local pattern detection. However,
experiments with (standard) association rule mining are often somewhat frus-
trating, because the number of local patterns often becomes that large that it
is no longer manageable. And even worse, most of these patterns – flagged as
being potentially interesting – turn out to be neither useful nor valid in the ap-
plication context. For a deeper discussion see [4]. The definition of local pattern
detection given by Hand [10] takes these aspects into account. The main points
in his definition are:

1. A local pattern is a data vector serving to describe an anomalously high
local density of data points when compared to a background model:

data = background model + pattern + random component (1)

2. Local pattern detection is unsupervised in the sense that no information
but the data itself is given to find out what patterns may be present in the
database, if any.

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 53–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

54 Frank Höppner

3. Local pattern detection is about inferring from observations, therefore pat-
terns must represent real phenomena and not just noise.

In this paper we will contrast the goals of local pattern detection with those
of clustering (section 2) and discuss some potential problems and consequences
when following the definition above (section 3). Whether a flagged pattern is
substantive or not is influenced by two different facts, one is the statistical sig-
nificance of an identified candidate patterns, the other is the robustness of the
applied algorithms, that is, the sensitivity to initial parameters, which is a prob-
lem with many clustering algorithms in particular. We will discuss consequences
and candidate algorithms in section 4. In section 5 we will finally discuss a
pattern detection algorithm that has many of the desired properties discussed
before, which will be illustrated via some examples in section 6.

2 Local Pattern Detection Vs. Clustering

At first glance, the before-mentioned description of pattern detection sounds
almost identical to clustering. Here is an exemplary definition from the literature:

“Clusters may be described as connected regions of multi-dimensional
space containing a relatively high density of points, separated from
other such regions by a region containing a relatively low density of
points” [7]

The identification of (local) regions with high data density (point 1 in the defini-
tion) and the fact that pattern detection is an unsupervised approach (point 2)
establishes a strong relationship between local pattern detection and clustering.

In accordance with point 1 of the definition, we could compose our data
model out of several Gaussian distributions and a single uniform distribution.
If we think of the uniform distribution as the background model in (1) and
the Gaussian distributions as the patterns, the differences between pattern de-
tection and clustering begin to blur. Standard mixture decomposition could be
applied to identify the parameters of the models – and if the parameters of the
Gaussian indicate that only a small portion of the input space is affected (small
covariance), we could speak of an identified pattern.

May be it is surprising that traditional definitions of clustering [7, 12, 14]
do not contain anything similar to the third statement in the definition of local
pattern detection, which refers to the statistical “validity” of identified clusters.1

While it is not mentioned in the definitions, the problem that “the resulting
clustering procedures have no known significant theoretical properties” [5] is
well recognized. But unfortunately not much has changed since Hartigan stated
in 1975 [12] that clustering algorithms “are not yet an accepted inhabitant of the
1 With some clustering algorithms, e.g. when the number of clusters has to be fixed in

advance, so called validity measures are used to “validate” the results. Even if these
measures are not purely heuristic in nature but investigate statistical properties of
a partition, they seldomly take the role of a statistical test.

Local Pattern Detection and Clustering 55

statistical world”. This makes the current position in pattern detection even more
similar to that in clustering, because in both fields some theoretical framework
is missing. (Given that Hartigan made his statement in 1975 and also given the
lack of progress in this concern, the “development of a theoretical base” [10] for
pattern detection appears really challenging.)

Rather than by using statistical tests, in machine learning overfitting is often
avoided by employing a regularization framework. In contrast to statistics, such
a framework aims at limiting the variability of the models, but does not care
primarily about the statistical significance of the result. On the other hand, if
the assumptions of the used statistical model (which are always present) are
violated (which may happen quite easily in KDD) there is not much left that
distinguishes regularization from statistical relevance tests.

Up to this point the reader may agree that clustering and (today’s) local
pattern detection are indeed very similar. The only distinction that is left is the
explicit focus on local patterns, which cannot be found in clustering. We will see
in the following, however, that this is not enough for a substantive distinction.
So a provocative definition of local pattern detection could be “clustering, done
right”.

3 What Is the Background Model?

Having a background model defining the normal situation enables us to apply a
statistical test to see whether some observations deviate significantly from the
background model or not. Thus the background model plays a key role in detect-
ing substantive local patterns. On closer inspection, however, it becomes clear
that this works well only under the assumption that the background model is
valid. And determining the validity of the background model may be as diffi-
cult as determining the validity of a cluster (or pattern) without a supporting
background model.

This leads us to the general question of how to select a background model. A
good candidate for a background model, when little domain knowledge is avail-
able, might be the uniform distribution. Figure 1(a) illustrates a hypothetical
data set. On the right hand side the data density is 4.0 (per some area) and on
the left it is 2.0, both sides are occupied by approximately the same number of
data objects. On both sides, there are smaller regions in which the data density
is 3.0; intuitively, these are the “patterns”. If we assume a uniform distribution
as the background model, we obtain an average density of 3.0, which perfectly
corresponds to the density of our patterns. Therefore, this background model
would not flag them as substantive patterns. The background model may flag
the larger regions as deviations from the background model, but they do not
qualify as patterns due to their size. (By the way, does the small cluster on the
right qualify as a pattern? It represents a deviation from the background model,
but its data density is smaller rather than larger.)

The point in Fig. 1 is of course that a single, simple background model will
not work. Either the background model must be flexible and complicated, or it

56 Frank Höppner

2

4
3

3

(a) The numbers in the areas denote
the average data density per volume.

2

4 3

3

2

1

4

(b) Locality is a matter of scale: The
environment of figure.

Fig. 1. A hypothetical data set.

must be possible to define different background models in different parts of the
data space.2 In the context of clustering, we could say that we have two clusters
in Fig. 1(a), the left and the right part of the figure. And within each cluster,
there is a small subcluster – which we may call a local pattern. But indeed, we
never know whether we currently observe a cluster, a background model or a
local pattern, unless we know about the scale at which we look on the data.
(The whole Fig. 1(a) may be a local pattern itself – in the upper right corner
of the coarser view of figure 1(b).) Even though we may be interested in local
patterns only, we have to carefully consider structures at any larger scale. In
analogy to (1) we could try to express this fact by a recursive definition

data = model + noise where
model = atomic model | background model + model∗ (2)

where model∗ means that any number of models can supplement the background
model. Thus, the data may be represented by a hierarchical tree of models, where
the same model may serve as a cluster in one level and a background model in
another. Local patterns (in the sense of small clusters) can be considered as the
leaves of this model tree.

A background model helps with the identification of substantive local pat-
terns only if the background model itself is valid. Simple examples (fig. 1(a)) show

2 In association rule mining, the minimum support threshold may be seen as being
part of a very coarse background model. In a k-dimensional boolean space, we have
2k possible configurations. For n records and a uniform distribution, we expect n

2k

objects per combination. The minsupp threshold, however, is the same for all item
sets of any size and does not depend on k.

Local Pattern Detection and Clustering 57

that we cannot restrict ourselves to a global, simple background model. Estimat-
ing a valid background model of arbitrary complexity (eq. (1)) in one step seems
unrealistic. Utilizing erroneous or inadequate background models puts the va-
lidity of the identified local patterns in question. The most promising approach
is to start with a simple model (whose parameters can be estimated easily and
robustly) and use this as the basis for the next hierarchy level to come (eq. 2)).
Then, for the identification of all models in later stages, we already benefit from
the existence of a valid background model (stepwise refinement). This approach
allows us to stick to simple background models, such as the uniform distribution,
even in cases like figure 1(a) (only the boundary remains to be determined). And
this approach also underlines that we cannot focus on local structure only, but
must carefully investigate structures at any scale.

4 Escaping from Heuristic Thresholds

One can easily find clustering algorithms that respect these ideas. For instance,
we could start by estimating the parameters of a mixture of Gaussians. In [5]
(p. 558) a statistical test is proposed to decide whether a cluster may have been
generated from a single Gaussian. Such tests can be applied to each cluster for
validation; if the test fails, we may generate a new data set that contains only
the data objects belonging to this cluster (for instance, we could sample from
the original data set using the a posteriori probabilities of being generated by
the Gaussian). We then apply the same clustering algorithm once more, which
leads us to a hierarchical subdivision of the previously discovered cluster. The
data set refinement is stopped if such a refinement cannot be justified by the
data any longer. A similar method (where the tests are not statistical in nature)
can be found in [9].

When implementing such algorithms technical details become highly relevant
for failure or success, such as:

– Did the algorithm yield the correct solution (that is, did the expectation
maximization algorithm yield the (globally) optimal solution)?

– Was the assumption of Gaussian distributions justified?
– If we need data density estimations (e.g. to detect the clusters in Fig. 1(a)),

did we select an appropriate size of the area that is used to estimate the
density?

Most clustering algorithms require a couple of initialization parameters – and
are generally more sensitive to their setting than we would like them to be. The
(background) models are not the only information we are processing, and the
same effort to validate background models and patterns should also be spent
on any other step in the line of processing, because invalid intermediate results
also deteriorate the correctness of our final patterns. The theoretical advantage
of using statistical tests with the background model is worth nothing if the
algorithms pass ill-formed pattern candidates to the test.

58 Frank Höppner

With every (heuristic) threshold an algorithm requires we increase the risk
of processing unvalidated data. And a lot of decisions may be necessary, in
particular in the preprocessing phase. Most often, the parameters are chosen on
the basis of some small sample and visual inspection, but in KDD we cannot be
sure that the parameter will be valid for all unseen data to come. In fact, there
might be no single parameter that suits all local patterns equally well.

In the recent past, the multiscale approach has turned out to be a powerful
weapon against this problem: Rather than choosing one parameter setting, ex-
amine the results for all possible settings and choose the single or multiple values
that yield the most stable results. Multiscale techniques have been proven ex-
tremely helpful in many areas, such as image and shape recognition [15], signal
analysis [13, 16], data compression [17], and also clustering [2, 1], to mention
only a few. The next section briefly summarizes the OPTICS algorithm [1], a
multiscale clustering algorithm, which will be used in the subsequent sections
for pattern detection purposes.

Multiscale Clustering

In this section we will informally introduce the OPTICS algorithm, for the full
details we refer to [1]. Density based clustering algorithms usually count all data
objects within a hypersphere (or hyperbox) of fixed size to obtain a density
estimate. We say the neighborhood Nε(q) = {x | ‖x − q‖ ≤ ε} of a point q in
the database D is dense, if |Nε(q)| ≥ k. Given k and ε, a cluster C is defined
as a non-empty set, which satisfies two conditions: (a) a cluster has at least one
point with a dense neighborhood and (b) for each point p ∈ C with a dense
neighborhood, Nε(p) ⊆ C holds. Since the identified clusters depend on the
choice of ε, we speak of ε-clusters. The DB-SCAN algorithm [6] determines all
clusters (with respect to ε and k) in O(n log n) where n is the number of points.

The choice of ε is crucial in the DB-SCAN algorithm, and often it is not
possible to discover all the structure in a dataset with a single choice of ε. The
idea of the OPTICS algorithm is to generate all partitions for all possible values
of ε within some range [0, εmax] (in an efficient way). But then it remains still
unclear how to interpret or analyze that many resulting partitions. An interesting
question to ask is at what distance ε a point p’s neighborhood will become dense
(called core distance) and at what distance a point p will belong to a cluster
for the first time (called reachability distance). (Apparently the reachability
distance is less than or equal to the core distance, because at the core distance
the point will become a cluster of its own.) The OPTICS algorithm determines
these two values for all data objects and, furthermore, an ordering of data objects
that allows for a reconstruction of any DB-SCAN partition (see [1]). Figure 2(a)
shows an example of the so-called reachability plot, which aligns the data objects
according to the determined ordering on the horizontal axis. For any point p
in the plot (e.g. the marked one in Fig. 2(a)), the data points with smaller
reachability values to the left make up a (DB-SCAN-) cluster at the chosen
value of ε.

Local Pattern Detection and Clustering 59

ε

(a) Identification of an ε-cluster. (b) Decreasing ε to ε′ leads to em-
bedded data subsets I ′ ⊆ I .

Fig. 2. The reachability plot (result of the OPTICS algorithm). Horizontal axis: point
ordering, vertical axis: reachability value

Now it should be clear, how clusters (and local pattern candidates) are found
in the reachability plot: Clusters are “dents” (or valleys) in the graph, indicating
a region of high data density surrounded by data with lower density. Since the
width of a valley is determined by the number of data objects in the cluster, we
can use the width to distinguish large from small clusters (patterns).

5 An Approach to Local Pattern Detection

In [1] a heuristic procedure is proposed to extract clusters automatically from
the reachability plot. Thresholds on the steepness and length of the flanks sur-
rounding a flat valley are used to identify clusters. Although this technique seems
to work well, a drawback is the need for selecting a new heuristic parameter.

Here, we choose a different approach. Two things are needed in order to detect
substantive patterns: the pattern itself and the background. For the moment we
are not concerned about what model we will actually use, but about the data
subset that will be used to estimate the model’s parameters (pattern as well
as background model). A reasonable way to identify subsets is to consider all
data objects that are density connected for some ε (that is, belong to the same ε-
cluster). Local regions of high data density can be obtained from the reachability
plot by drawing a horizontal line at εP . Each interval on the data axis, where
the reachability plot drops below this line, corresponds to a data subset in which
all points are density-reachable at εP . Let us denote the data objects associated
with such an interval by IP and denote the number of points by nP . When
decreasing εP the subsets become more dense and smaller (cf. Fig. 2(b)).

Since we need two subsets, a larger one that corresponds to background and a
smaller one that corresponds to the pattern, we simply draw another horizontal
line at some larger εB > εP . For each local pattern subset IP we obtain a
background subset IB with IP ⊆ IB. Now, if the pattern model P (estimated
from data in IP) deviates from the background model B (estimated from data
in IB) significantly, we have identified a substantive pattern.

60 Frank Höppner

This illustrates the intended approach to the detection of a substantive local
patterns, but the thresholds εP and εB have not yet been determined. It is also
not yet clear, how a statistical test to identify a deviation of a pattern from its
background can be carried out.

5.1 Choosing Pattern and Background

At the beginning, with not information available, the whole data set will be
considered as the dataset for the background model (εB is the maximum of all
reachability values). From the reachability plot we can collect all reachability
values that actually occur and scan them from the largest (current background)
to the smallest value. For every new value ε we pass, we have one or more data
objects whose reachability value is identical to ε. Since large reachability values
indicate that there is a larger gap between the data to the left and on the right,
such a data point subdivides the current data subset into two or more parts (cf.
Fig. 3(a)). If a statistical test (that still has to be developed) indicates that there
is a significant deviation of one of the these subset from the current background,
we mark this subset as a cluster (or deviation from the background). If we
move the scan line further downwards, this new subset serves itself as the new
background model for subsequent subdivisions, as illustrated in figure 3(b). In
this way, we create a hierarchical tree of subsets directly from the reachability
graph, similar to the one discussed in [13].

2

ε1

ε

(a) If ε1 decreases, the associated
data subset is split up by a peak in
the reachability plot.

(b) Once a significant deviation has
been identified, the newly identified
pattern plays the role of the back-
ground as ε decreases further.

Fig. 3. Identification of background and pattern.

5.2 A Pattern Test

In the following we need local data density estimates. To calculate the data
density we need to approximate the space that is occupied by a subset of the
data. To get this estimate, we use the second outcome of the OPTICS algorithm,

Local Pattern Detection and Clustering 61

the core density of each data point. This is the distance to the kth neighbor and
can therefore be used for local data density estimation3. Given that for a data
object x the distance to the kth neighbor in the d-dimensional space is r, on
average it occupies the space Vx = V

k , where V =
√

πd

Γ (d/2)r
d is the space occupied

by the sphere containing the k nearest neighbors of x and Γ denotes the Gamma
function. In the two-dimensional case of our illustrative examples, we assign to
each data object x a volume of Vx = π·r2

k . The volume that is occupied by a
subset of the dataset is simply the sum of volumes of each data point within
the pattern or background. It should be noted that this estimation contains only
the occupied space and free space in between is not considered. For instance, if
we have two uniform clusters of identical density, the estimated volume for this
data set contains the volume of the clusters only, but not the space between the
clusters.4

There are several possibilities for defining models for patterns and back-
ground. For instance, we could use a uniform data density; we may assume that
the data objects are uniformly distributed in the occupied data space, and that
we have found a substantive cluster if for some subset the number of data ob-
jects differs significantly from the expected number of data objects given the
volume of this subset. Having assigned data volumes VP to the pattern and VB

to the background, we can define a binomial distribution where the probability
of a randomly chosen data object lying in the pattern volume is simply p = VP

VB
.

The expected number of data objects in the pattern is then nB · p, which can
be tested against the actual number of data objects nP (where nP is the num-
ber of data objects in the pattern and nB in the background). Unfortunately,
this approach fails in practice. Suppose we have a data set generated completely
at random from a uniform distribution. It may happen that a few data points,
say 3, are by chance very close together, much closer than the average distance
between data objects. This leads to a very small total volume for this subset.
Any background set occupies much larger space VB, which leads to very small
pattern probabilities p. Such small probabilities make the chances of generating
3 data objects within the pattern region very unlikely even for small background
sample sizes. In consequence, this approach flags much more patterns as being
significant than there are actually in the dataset.

It is also possible to assume that the local data densities within a subset
obey some known distribution and to test the parameters obtained from the
pattern and the background for being identical. But from the construction of

3 We used a value of 5 for k to limit the influence of border effects. Larger values are
better for visual inspection of the reachability plot, but if a pattern consists of a
few points only and k is high, it is very likely that the density estimation is heavily
influenced by the surrounding data that do not belong to the pattern whose density
we want to estimate.

4 This is quite different from those approaches to clustering where assumptions on
certain cluster shapes are made, such as hyperspherical clusters with k-means and
derivatives. There, cluster volume estimations are usually based on the center and
some mean distance between data objects and center.

62 Frank Höppner

the subsets via the reachability plot it is clear that the pattern sample is not
a random sample of the background subset, but we intentionally consider only
those data values that have a small data volume. Therefore it is quite obvious
that we will observe significant deviations in, say, the mean density of pattern
and background quite frequently.

The approach that evaluated best is the following: Let �i be the data density
estimated for data object xi and N be the number of data objects, �min =
min{�i|1 ≤ i ≤ N} and �min = max{�i|1 ≤ i ≤ N}. The range [�min, �max] of
estimated data densities is partitioned into m equally sized parts

Si = [�min + (i − 1)Δ, �min + i · Δ]

with Δ = |�max − �min|/m (in the experiments m was set to 24). We consider
the local data density as being an attribute of the data object itself rather
than a property of its neighborhood. Thus B (resp. P) is a m-nomial random
variable whose outcome determines the density of a point in the background
(resp. pattern) dataset; P (B = S1) denotes the probability of a randomly chosen
data object to ’have’ a data density within [�min, �min + Δ]. The distribution
P (B = Si) is empirically estimated from |{xj |�min + (i − 1)Δ ≤ �j < �min +
iΔ}|/N .

A chi-square test can be applied to test whether a sample (the pattern subset)
may have been generated from this multinomial distribution. In this case, the
pattern would not be flagged as a deviation from the background. But before
we apply this test, we compensate for the subset selection bias mentioned in the
previous paragraph. The deeper the subset is in the hierarchy (or the smaller
εP is), the higher the data density will be. We therefore do not compare the
m-nomial distributions, but exclude the part of Pr(B) with low data densities,
which are no longer present in the subset due to the way we select the subset from
the reachability graph. That is, we find a lower bound � for the density values
in the subset and compare Pr(B|B > �) with Pr(P |P > �) rather than Pr(B)
with Pr(P). As an example, assume the background data density distribution
is given by

(0.0, ..., 0.0, 0.01, 0.0, 0.03, 0.05, 0.07, 0.10, 0.09, 0.13, 0.21, 0.12, 0.11, 0.08)

that is P (B = Sm) = 0.08, P (B = Sm−1) = 0.11, etc. Starting from the left
(S0, sparse data, low data density), we calculate the number of data objects
that we expect in the pattern subset with this data density, given the size |P | of
the current pattern candidate P . If this expected number is below 5 or no data
objects with this data density were observed in the pattern subset, the chi-square
test cannot be applied and we consider a reduced (m − 1)-nomial distribution
with the leftmost slot removed. This step is repeated and the number of slots
is reduced to some 0 ≤ m′ ≤ m. In the example, for |P | = 100, m′ = 9. With
� = �min + m′ · Δ, the distribution P (B|B > �) (that is, only a m′-nomial
distribution) is then tested against P (P |P > �). This procedure is to some
degree a technical necessity to apply the chi-square test, but also effectively
excludes regions of low data density in the background in the comparison with

Local Pattern Detection and Clustering 63

the pattern candidate and thereby compensates the discussed pattern selection
bias.

number of data objects
Figure noise pattern 1 pattern 2 pattern 3

5 2000 – – –
4(a) 2000 50 – –
4(b) 1500 250 250 100
4(c) 1500 400 100 100
4(d) 2000 50 30 20

mean values
Figure pattern 1 pattern 2 pattern 3

4(a)
(

0.3
0.3

)
– –

4(b)
(

0.3
0.7

) (
0.7
0.2

) (
0.8
0.7

)
4(c)

(
0.4
0.5

) (
0.7
0.2

) (
0.8
0.7

)
4(d)

(
0.4
0.6

) (
0.2
0.4

) (
0.9
0.1

)
covariances

Figure pattern 1 pattern 2 pattern 3

4(a)
(

0.0252

0
0

0.0252

)
– –

4(b)
(

0.12

0
0

0.052

) (
0.12

0
0

0.12

) (
0.052

0
0

0.052

)
4(c)

(
0.22

0
0

0.22

) (
0.052

0
0

0.12

) (
0.052

0
0

0.052

)
4(d)

(
0.052

0
0

0.052

) (
0.022

0
0

0.032

) (
0.022

0
0

0.022

)
Table 1. Construction of the data sets in figure 4 (number of global noise points, mean
and covariances of local patterns).

6 Examples

In this section we present some results obtained from the proposed local pattern
detection algorithm. We discuss results for five data sets, one of them consisting
of 2000 data objects uniformly distributed in the unit square. All other data sets
are depicted in figure 4(a)-4(d). The dataset in Fig. 4(a) has also been used in
[3]. Table 1 summarizes how the data sets have been generated. Especially Fig.
4(d) represents a difficult problem, because the superimposed patterns are really
small and quite difficult to identify even for a human.

Figure 5 shows the reachability graph for the uniform data set and two dif-
ferent values of k (number of data points in a dense neighborhood). Although no
substantive patterns were superimposed over the uniform noise, the reachability

64 Frank Höppner

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(c)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(d)

Fig. 4. Collection of test data sets, generated according to table 1.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

(a) k = 5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

(b) k = 20

Fig. 5. Reachability plot for uniform distribution with k = 5 and k = 20.

plot shows many random local minima and maxima, which are more distinct
for k = 20. For all experiments k = 5 has been used because 20 data points is
already the size of the smallest pattern we want to discover in Fig. 4(d) (cf. also
footnote 3).

Local Pattern Detection and Clustering 65

Figure 5(a) additionally shows via horizontal lines the data subsets that
were identified as substantive patterns by the algorithm, as it was discussed
in Fig. 3. Four such intervals have been determined, one contains almost 75%
of the data set and therefore would not qualify as a small cluster or pattern.
Given the number of flagged patterns reported in [3], showing only 4 substantive
pattern/background-deviations (only 3 qualify as potential patterns) is an im-
pressive small number. The four identified subsets are shown in Fig. 6. The top
left figure corresponds to the long line, the top right figure to the short line to the
right. The two figures in the bottom correspond to the small patterns that use
the “long line” subset as the background pattern. In both of these subpatterns
the data density deviates by chance significantly from the data density in the
background.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

Fig. 6. Flagged clusters in the uniform data set. Top row: the whole dataset is the
background data, the black points are the pattern. The pattern in the top left figure
corresponds to the long line in Fig. 5(a). Bottom row: The identified pattern in the top
left figure became the background (gray) for the two patterns in the bottom row. The
patterns are again shown in black, the background in gray. The points in light gray do
not belong to background nor pattern.

For the dataset in Fig. 4(a) with a single substantive cluster, five pattern /
background combinations have been identified. They are depicted in the reach-
ability graph in figure 7. Four of the five subsets are subsets of each other (the
algorithm focuses slowly on the core of the pattern), such that only the “smallest”
subset qualifies as a local pattern. Two of these hierarchically embedded subsets

66 Frank Höppner

are shown in the bottom row of images in Fig. 7, with the smallest cluster (right
bottom) corresponding very well to the superimposed normal distribution. The
single remaining subset is shown in the top right image, which identifies another
region of particularly high data density. This pattern is not artifically generated
but occurred by chance, but only one such incidental agglomeration has been
flagged.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 500 1000 1500 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

Fig. 7. Flagged clusters in the data set of Fig. 4(a). (See also explanations in Fig. 6.)

The results of the datasets in Fig. 4(b) and 4(c) are shown in Fig. 8 and 9,
resp. In both cases we have quite large patterns, but different data densities.
The data densities of the patterns in Fig. 4(b) deviate clearly from the back-
ground noise. Similar to the previous case, the algorithm determines a sequence
of significant deviations that slowly focuses on a small spot, which can then be
considered as a local pattern. Although the number of marked subsets is quite
large in Fig. 8 (top left), we have only five different local patterns identified.
The three largest correspond to the superimposed patterns and are shown in the
figure. The fact that – compared to Fig. 8 – much more deviations have been
recognized is due to the fact that Gaussian distributions have been superim-
posed: rather than an abrupt change in the density, which would lead to a single
deviation, we have a slowly increasing data density which introduces several sig-
nificant deviation levels. If we are interested in local patterns only, we can ignore
all those patterns that contain an even smaller subpattern, which leads us again
to a very small number of flagged local patterns.

Local Pattern Detection and Clustering 67

In contrast to Fig. 4(b), the data densities of the patterns in Fig. 4(c) do
not deviate that much from the background density, but this does really affect
the performance of the algorithm, as we can see from Fig. 9. We have fewer
focusing steps, but again the smallest patterns correspond to the superimposed
Gaussian distributions. Besides the three true patterns, only one more false
positive pattern has been flagged.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 500 1000 1500 2000

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

Fig. 8. Some flagged clusters in the figure 4(b). (See also explanations in Fig. 6.)

Finally, Fig. 10 shows the results for the most difficult test set in Fig. 4(d).
Five local patterns are identified, three of them correspond to the true patterns,
we have only two false positives.

7 Summary and Conclusions

We have seen that local pattern detection (in the notion of [10]) is very similar
to clustering. The challenge in local pattern detection is almost the same as in
clustering, namely to identify valid, substantive structure (clusters, patterns) in
data. The smaller the structure, the more difficult it is to determine its validity,
because smaller structures are more likely to occur by chance.

To tackle this problem, it was proposed in [10] to install a (global) back-
ground model to verify local patterns against the background. The feasibility of
the approach depends on the validity of the background model, but we have seen

68 Frank Höppner

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 500 1000 1500 2000

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1

unused background pattern

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1

unused background pattern

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1

unused background pattern

Fig. 9. Some flagged clusters in the figure 4(c). (See also explanations in Fig. 6.)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 500 1000 1500 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

unused background pattern

Fig. 10. Some flagged clusters in the figure 4(d). (See also explanations in Fig. 6.)

Local Pattern Detection and Clustering 69

that we cannot restrict ourselves to simple background models. Therefore, a hi-
erarchical approach appears to be most promising: instead of estimating a global
complex background model, the utilization of a tree of simple (background) mod-
els is proposed, where each of them is installed only if it significantly deviates
from the previous model. The hierarchical approach underlines that local pat-
tern detection cannot be concerned about the local structures only, but has to
carefully investigate structures at any scale – just like clustering.

Flagging a pattern candidate as being substantive or not is one thing, but the
same care should be applied to the identification of pattern candidates (which are
then passed to the statistical test). The more heuristic parameters an algorithm
utilizes, the higher the chances of choosing inappropriate values. If the results
are very sensitive to these parameters, how can we be sure that we identify real
patterns or just artefacts? Multiscale algorithms have the advantage that they do
not count on the user’s ’guessing’ capabilities but almost eliminates a threshold
by analyzing the results over a large range of possible settings.

The OPTICS algorithm is a clustering algorithm that satisfies most of these
requirements: it is a multiscale algorithm, is quite insensitive to the choice of
the only parameter k, detects clusters of arbitrary shape and is efficient. We
have discussed an alternative ’backend’ to this algorithm that identifies a tree of
significant deviations, whose leaves correspond to local patterns. For a number
of two-dimensional test cases the results were shown: all patterns have been
identified and only a very small number of false positives have been flagged.
Validating the approach in a broader set of test data remains for future work.

Acknowledgments: Many thanks to Prof. Dr. Kriegel for kindly providing
an implementation of the OPTICS algorithm.

References

[1] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. OP-
TICS: Ordering points to identify the clustering structure. In Proc. of ACM
SIGMOD Int. Conf. on Management of Data, Philadelpha, 1999.

[2] Gerardo Beni and Xiaomin Liu. A least biased fuzzy clustering method. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 16(9):954–960, September
1994.

[3] Richard J. Bolton and David J. Hand. Significance tests for patterns in continuous
data. In Proc. of IEEE Int. Conf. on Data Mining, 2001.

[4] Richard J. Bolton, David J. Hand, and Niall M. Adams. Determining hit rate in
pattern search. In [11], pages 36–48, 2002.

[5] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
John Wiley & Sons, 2001.

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xu Xiaowei. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proc. of
the 2nd ACM SIGKDD Int. Conf. on Knowl. Discovery and Data Mining, pages
226–331, Portland, Oregon, 1996.

[7] B. S. Everitt. Cluster Analysis. John Wiley & Sons, 1974.
[8] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy

Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. MIT
Press, 1996.

70 Frank Höppner

[9] Amir B. Geva. Non-stationary time-series prediction using fuzzy clustering. In
Rajesh N. Davé and Thomas Sudkamp, editors, Proc. of the 18th Int. Conf. of
the North American Fuzzy Information Processing Society, pages 413–417, June
1999.

[10] David Hand. Pattern detection and discovery. In [11], pages 1–12, 2002.
[11] David Hand, Niall M. Adams, and Richard J. Bolton, editors. Pattern Detection

and Discovery, volume 2447 of LNAI. Springer, 2002.
[12] John A. Hartigan. Clustering Algorithms. John Wiley & Sons, 1975.
[13] Frank Höppner. Handling feature ambiguity in knowledge discovery from time

series. In Proc. of 5th Int. Conf. on Discovery Science, number 2534 in LNCS,
pages 398–405, Lübeck, Germany, November 2002. Springer.

[14] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-
Hall, 1988.

[15] Tony Lindeberg. Scale-Space Theory in Computer Vision. Int. Series in Engineer-
ing and Computer Science, Robotics: Vision, Manipulation and Sensors. Kluwer
Academic Publishers, Dordrecht, 1994.

[16] Stephane G. Mallat. A Wavelet Tour of Signal Processing. Academic Press, Inc.,
2nd edition, 2001.

[17] Pabitra Mitra, C. A. Murthy, and Sankar K. Pal. Density-based multiscale
data condensation. IEEE Trans. on Pattern Analysis and Machine Intelligence,
24(6):734–747, June 2002.

Local Patterns: Theory and Practice of

Constraint-Based Relational Subgroup Discovery

Nada Lavrač1,2, Filip Železný3, and Sašo Džeroski1

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2 Nova Gorica Polytechnic, Vipavska 13, 5000 Nova Gorica, Slovenia

3 Czech Technical University, Prague, Czech Republic

Abstract. This paper investigates local patterns in the multi-relational
constraint-based data mining framework. Given this framework, it con-
tributes to the theory of local patterns by providing the definition of
local patterns, and a set of objective and subjective measures for evalu-
ating the quality of induced patterns. These notions are illustrated on a
description task of subgroup discovery, taking a propositionalization ap-
proach to relational subgroup discovery (RSD), based on adapting rule
learning and first-order feature construction, applicable in individual-
centered domains. It focuses on the use of constraints in RSD, both in
feature construction and rule learning. We apply the proposed RSD ap-
proach to the Mutagenesis benchmark known from relational learning
and a real-life telecommunications dataset.

1 Introduction

Inductive databases [11] embody a database perspective on knowledge discovery,
where knowledge discovery processes are considered as query processes. In ad-
dition to normal data, inductive databases contain patterns (either materialized
or defined as views). Data mining operations looking for patterns are viewed as
queries posed to the inductive database. In addition to patterns (which are of
local nature), models (which are of global nature) can also be considered.

A general formulation of data mining [19] involves the specification of a
language of patterns and a set of constraints that a pattern has to satisfy with
respect to a given database. The constraints that a pattern has to satisfy can be
divided in two parts: language constraints and evaluation constraints. The first
only concern the pattern itself, the second concern the validity of the pattern
with respect to a database.

1.1 Constraints in Inductive Databases

Inductive queries consist of constraints and the primitives of an inductive query
language include language constraints (e.g., find association rules with item A
in the head) and evaluation primitives. Evaluation primitives are functions that
express the validity of a pattern on a given dataset. We can use these to form
evaluation constraints (e.g., find all item sets with support above a threshold)

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 71–88, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

72 Nada Lavrač, Filip Železný, and Sašo Džeroski

or optimization constraints (e.g., find the 10 association rules with highest con-
fidence).

Constraints thus play a central role in data mining and constraint-based data
mining is now a recognized research topic [4]. The use of constraints enables
more efficient induction as well as focussing the search for patterns on patterns
likely to be of interest to the end user. While many different types of patterns
have been considered in data mining, constraints have been mostly considered
in mining frequent itemsets and association rules, as well as some related tasks,
such as mining frequent episodes, Datalog queries, molecular fragments, etc. Few
approaches exist that use constraints for other types of patterns/models, such
as size and accuracy constraints in decision trees [10] or in classification rule
discovery.

1.2 Constraints in Relational Subgroup Discovery

In this paper, we consider the use of constraints in the context of relational sub-
group discovery (RSD). We consider the task of subgroup discovery defined as
follows: given a population of individuals and a specific property of those indi-
viduals that we are interested in, find population subgroups that are statistically
‘most interesting’, e.g., are as large as possible and have the most unusual sta-
tistical (distributional) characteristics with respect to the property of interest
[32]. We restrict ourselves to class-labeled data in our approach, with the class
attribute being the property of interest.

While the goal of standard rule learning is to generate models, one for each
class, inducing class characteristics in terms of properties occurring in the de-
scriptions of training examples, in contrast, subgroup discovery aims at discov-
ering individual ‘patterns’ of interest. In this sense, subgroup discovery belongs
to descriptive induction [23,34] which has recently gained much attention of
researchers developing rule learning algorithms. These involve mining of associ-
ation rules (e.g., the APRIORI association rule learning algorithm [1]), clausal
discovery (e.g., the CLAUDIEN system [23,24]), subgroup discovery (e.g., the
MIDOS [32,33], EXPLORA [12], SD [9] and CN2-SD [17] subgroup discovery
systems) and other approaches to non-classificatory induction aimed at finding
interesting patterns in data.

Our approach to constraint-based RSD first performs feature generation,
then applies a propositional approach to subgroup discovery (the RSD imple-
mentation in the Yap Prolog with a user’s manual and sample problems can
be obtained from http://labe.felk.cvut.cz/~zelezny/rsd). The combina-
tion of the above mentioned strategies controlled by constraints represents an
original approach to relational subgroup discovery, altough previous work exists
incorporating some of the techniques mainly in classification rule discovery; e.g.,
rule induction with constraints in relational domains including propositionaliza-
tion [2,3], or using rule sets to maximize ROC performance [7].

Local Patterns 73

1.3 Outline of the Paper

This paper investigates local patterns in the multi-relational constraint-based
data mining framework. Given this framework, it contributes to the theory of
local patterns by providing the definition of local patterns and proposing a set of
objective and subjective measures for evaluating the quality of induced patterns
(Section 2). These notions are applied to a description task of subgroup discovery,
for which a practical relational subgroup discovery algorithm RSD has been
developed (Section 3). Section 4 discusses the use of constraints in RSD, followed
by the experimental evaluation of the proposed approach to subgroup discovery
in Section 5.

2 Theory of Local Patterns

This section contributes to the theory of local patterns by providing the definition
of local patterns, and proposing a set of objective and subjective measures for
evaluating the quality of induced patterns.

2.1 Pattern Discovery as Rule Learning

As in classification rule learning, we consider patterns of the form of a (back-
wards) implication:

Class ← Cond

Having limited the form of patterns to the above rule form, we limit the scope
of investigation to patterns with a certain property of interest which is the goal
of investigation (the target class, Class) that appears in the rule consequent.
In the selected formalism the rule antecedent (Cond) is a conjunction of fea-
tures (attribute-value pairs) selected from the features describing the training
instances.

In the given scope, pattern discovery is a task at the intersection of predic-
tive and descriptive induction. By inducing rules from labeled training instances
(labeled positive if the property of interest holds, and negative otherwise), the
process of subgroup discovery is targeted to uncovering properties of a selected
target population of individuals with the given property of interest. In this sense,
pattern discovery is a form of supervised learning. The fact that a pattern dis-
covery task aims at characterizing population subgroups of a given target class
suggests that standard classification rule learning could be used for solving the
task. However, pattern discovery is a form of descriptive induction as the task
is to uncover individual rules or patterns of interest, which must be represented
in explicit symbolic form and which must be relatively simple in order to be
recognized as actionable by potential users.

Each pattern can be extended with the information about the rule quality.
Unlike in association rule learning, where rules are equipped with the support

74 Nada Lavrač, Filip Železný, and Sašo Džeroski

and confidence of a rule, in this paper a standard rule pattern has the following
form:

Class ← Cond [TPr, FPr] (1)

where Class is the target property of interest, Cond is a conjunction of features
(attribute-values), TPr is the true positive rate or the sensitivity, computed as
p(Cond|Class) = n(Class.Cond)

Pos , and FPr is the false alarm or false positive rate,

computed as p(Cond|Class) = n(Class.Cond)
Neg . In these formulas n(Class.Cond)

is the number of true positives TP (the number of covered instances belonging to
Class), n(Class.Cond) the number of false positives FP (the number of covered
instances not belonging to Class), Pos is the number of positives (instances of
the target class), Neg the number of negatives, and N = Pos + Neg is the size
of the entire population.

2.2 Pattern Evaluation Measures

One can distinguish between objective and subjective quality measures (measures
of interestingness) [26]. Both the objective and subjective measures need to be
considered in order to solve pattern discovery tasks. Which of the quality criteria
are most appropriate depends on the application. Obviously, for automated rule
induction it is only the objective quality criteria that apply. However, for evalu-
ating the quality of induced patterns and their usefulness for decision support,
the subjective criteria are more important, but also harder to evaluate.

As shown in Section 2.1, each rule can be extended with the information
about the rule quality. While the basic information of rule quality is usually
attached to the induced rule itself, as output of the learning algorithm, other
quality measures are usually computed for a ruleset, in order to evaluate the
output of the induction process as a whole, enabling the comparison of the
performance of different algorithms.

Below is a list of subjective measures of interestingness:

– Usefulness. Usefulness is an aspect of rule interestingness which relates a
finding to the goals of the user [12].

– Operationability. In this paper we have introduced the notion of opera-
tionability, which is one aspect of usefulness.

– Actionability. “A rule is interesting if the user can do something with it to his
or her advantage” [25,26]. Actionability is a special case of operationability.

– Unexpectedness. A rule is interesting if it is surprizing to the user [26].
– Novelty. A finding is interesting if it deviates from prior knowledge of the

user [12].
– Redundancy. Redundancy amounts to the similarity of a finding with respect

to other findings; it measures to what degree a finding follows from another
one [12], or to what degree multiple findings support the same claims.

When discussing the objective quality measures - in line with the distinc-
tion between predictive induction and descriptive induction - one can distinguish

Local Patterns 75

between the predictive and descriptive quality measures. A typical predictive
quality measure, measuring the quality of a ruleset, is predictive accuracy of a
ruleset, defined as the percentage of correctly predicted instances.4

In contrast with predictive quality measures, descriptive quality measures
evaluate each individual subgroup and are thus appropriate for evaluating the
success of pattern discovery. The following measures turn out to be most appro-
priate for measuring the quality of individual rules: rule size, coverage, support,
accuracy (in different contexts also called precision or confidence), significance
and unusualness. Although the evaluation of each individual rule is of ultimate
importance, their variants that compute the average over the induced set of sub-
group descriptions enable the comparisons of subgroup discovery algorithms (see
[17] for the exact definition of these measures).

To explain rule significance and unusualness, which are the most important
pattern discovery measures, some of the other measures for evaluating the qual-
ity of rules of the form Class ← Cond need to be explained first. Coverage
p(Cond) is a measure of generality, computed as the relative frequency of all
the examples covered by the rule: n(Cond)

N . Support p(Class.Cond) is computed
as the relative frequency of correctly classified covered examples: n(Class.Cond)

N .
Rule accuracy p(Class|Cond) (called precision in information retrieval and con-
fidence in association rule learning) is the fraction of predicted positives that
are true positives. Next, we define accuracy gain as the difference between rule
accuracy p(Class|Cond) and default accuracy p(Class) achieved by the trivial
rule Class ← true.

– Significance of a rule is computed in terms of the likelihood ratio of a rule,
normalized with the likelihood ratio of the significance threshold (99%). Sig-
nificance (or evidence, in the terminology of [12]) indicates how significant is
a finding if measured by this statistical criterion. In the CN2 algorithm [5],
significance Sig(Class ← Cond) is measured in terms of the likelihood ratio
statistic5 of a rule as follows:

2
∑

i

n(Classi.Cond). log
n(Classi.Cond)

n(Classi) · p(Cond)
(2)

where for each class Classi, n(Classi.Cond) denotes the number of instances
of Classi in the set where the rule body holds true, n(Classi) is the number
of Classi instances, and p(Cond) (i.e., rule coverage computed as n(Cond)

N)
plays the role of a normalizing factor. Note that although for each gener-
ated subgroup description one class is selected as the target class, the sig-
nificance criterion measures the distributional unusualness unbiased to any
particular class – as such, it measures the significance of rule condition only:
Sig(Class ← Cond) = Sig(Cond).

4 For a binary classification problem, ruleset accuracy is computed as TP+TN
N

.
5 In two-class problems this statistic is distributed approximately as χ2 with one degree

of freedom.

76 Nada Lavrač, Filip Železný, and Sašo Džeroski

– Unusualness of a rule is computed by the weighted relative accuracy of a rule
[15], defined as follows:

WRAcc(Class ← Cond) = p(Cond).[p(Class|Cond) − p(Class)]

Weighted relative accuracy can be understood as trading off rule coverage
p(Cond) and accuracy gain p(Class|Cond) − p(Class).

As shown in [17], WRAcc is appropriate for measuring the unusualness of
patterns, because it is proportional to the vertical distance from the diagonal in
the ROC space (for ROC analysis, see [22]). As such, WRAcc also reflects rule
significance - the larger WRAcc is, the more significant the rule is, and vice versa.
As both WRAcc and rule significance measure the distributional unusualness of
a pattern, they are the most important quality measures for pattern discovery, if
the goal of pattern mining is— as is the case in this paper—finding of interesting
population subgroups which are sufficiently large and distributionally unusual.
However, while significance only measures distributional unusualness, computed
in terms of correctly classified covered examples of all classes, WRAcc takes
explicitly the rule coverage into the account, therefore we consider unusualness
to be the most appropriate measure for pattern quality evaluation.

It can be shown that for a given pattern, its WRAcc value is proportional to
the value of the Area Under the ROC Curve (AUC). Consequently, as optimizing
WRAcc means also optimizing AUC, WRAcc proves to be of use not only as a
heuristic appropriate for pattern discovery in descriptive induction, but also for
predictive induction. This claim is supported by the results achieved in [29,16]
in the comparisons of variants of CN2 and CN2-SD in which WRAcc was used
instead of the rule accuracy heuristic.

3 Background: Relational Subgroup Discovery

Our approach adapts classification rule learning to relational subgroup discovery,
described in [16], achieved by (a) propositionalization through first-order feature
construction, (b) incorporation of example weights into the covering algorithm,
(c) incorporation of example weights into the weighted relative accuracy search
heuristic, (d) probabilistic classification based on the class distribution of covered
examples by individual rules, and (e) area under the ROC curve rule set evalu-
ation. The main advantage of the proposed approach is that each induced rule
with a high weighted relative accuracy represents a ‘chunk’ of knowledge about
the problem, due to the appropriate tradeoff between accuracy and coverage,
achieved through the use of the weighted relative accuracy heuristic.

The input to the RSD algorithm consists of a relational database containing
one main table (relation), where each row corresponds to a unique individual
and one attribute of the main table is specified as the class attribute - this
table defines the training examples, and other tables (relations) defining the
background knowledge. In addition, a mode-language definition is given, which is
used to construct first-order features.

Local Patterns 77

The output of RSD is a set of subgroups whose class distributions differ sub-
stantially from the class distribution in the complete data set. The subgroups
are defined by conjunctions of (automatically generated/defined) first-order fea-
tures. The RSD algorithm proceeds in two stages: first-order feature construction
and rule-based subgroup discovery.

RSD First-Order Feature Construction In our approach to first-order fea-
ture construction, based on [8,13,18], local variables referring to parts of individ-
uals are introduced by so-called structural predicates. In a given language bias
for first-order feature construction, a first-order feature is composed of one or
more structural predicates introducing a new variable, and of utility predicates
as in LINUS [14] (called properties in [8]) that ‘consume’ all new variables by
assigning properties of individuals or their parts, represented by variables intro-
duced so far. Utility predicates do not introduce new variables. (Examples of
both types of predicates will be given below.)

The design of an algorithm for constructing first-order features can be split
into two relatively independent problems:

Step 1: Identify features. This step results in identifying all first-order literal
conjunctions that form a feature in the sense explained above, and at the same
time comply to user-defined constraints (mode-language). Such features do not
contain any constants and the task can be completed independently of the input
data.

Step 2: Employ constants. This step results in extending the feature set by
variable instantiations. Certain features are copied several times with some vari-
ables substituted to constants ‘carefully’ chosen from the input data. During
this process, some irrelevant features are detected and removed, based on sev-
eral constraints.

Both steps can be viewed as an exploitation of the combination of pre-set and
user-defined sets of constraints of both syntactic (language-related) and semantic
(data-oriented) character. From this viewpoint, they will be explained in detail
in the devoted Section 4.

RSD Rule Induction Algorithm The core of RSD is a subgroup discovery
algorithm which can accept data propositionalized by the feature constructor
described above. The algorithm inherits some basic principles of the CN2 rule
learner [5], which are adapted in several substantial ways to meet the needs of
subgroup discovery. The principal improvements, making it appropriate for sub-
group discovery, involve the implementation of the weighted covering algorithm,
incorporation of example weights into the weighted relative accuracy heuristic,
probabilistic classification, and the area under the ROC curve rule set evalua-
tion [16].

78 Nada Lavrač, Filip Železný, and Sašo Džeroski

4 Using Constraints in RSD

The curse of combinatorial dimensionality is present in the principles underlying
both procedural phases of RSD:

– We apply language constraints to define the language of possible subgroup
descriptions. These are applied both in feature generation and rule induction.

– We apply evaluation constraints during rule induction to select the (most)
interesting rules/subgroups.

Consequently, RSD makes heavy use of both syntactic and semantic constraints
exploited by search-space pruning mechanisms. On one hand, some of the con-
straints (such as feature undecomposability) are deliberately enforced by the sys-
tem and pruning based on these constraints is guaranteed not to cause the omis-
sion of any solution. On the other hand, additional contraints (e.g. maximum
variable depth) may be tuned by the user. These are designed with the inten-
tion to most naturally reflect possible user’s heuristic expectations or minimum
requirements on quantitative evaluations of search results.

4.1 Constraints in Feature Construction

Motivated by language-bias declarations used in ILP systems, RSD accepts lan-
guage declarations very similar to those used by the systems Aleph [27] and
Progol [21], including variable types, modes, setting a recall parameter etc, used
to syntactically constrain the set of possible features. The use of the language
bias declarations are best explained on a simple example. For this purpose we
use the well-known East-West trains domain [20].

Structural predicates. By the mode declaration :-modeb(1,hasCar(+train,
-car)) the user tells the system that the binary background relation hasCar
may be employed in the body of constructed features, so as to provide the
identification of some car of a specified train. The number 1 (“recall”) de-
termines that a feature can address at most one car of a given train. Input
variables are labeled by the + sign, and output variables by the - sign.

Property predicates. Defined as above, but have no output variables.
Head predicate. Its declaration always contains exactly one variable of the in-

put mode (e.g., :-modeh(1, train(+train)). The declaration serves merely
to identify the key of the main individual.6

RSD produces all features satisfying the mode and setting declarations. The
features produced by RSD have to satisfy an important constraint: a feature
may not be decomposable into a conjunction of two features.

For example, the feature set based on the modes
:-modeh(1, train(+train)).
:-modeb(2, hasCar(+train, -car)).

6 The head declaration thus may seem overly complicated but contributes to compata-
bility with declarations used with the widely used ILP systems mentioned earlier.

Local Patterns 79

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

T
im

e
[s

]

Max feature length [literals]

Pruning OFF
Pruning ON

Fig. 1. The effect of pruning in the syntactic feature construction on efficiency
in the East-West Trains domain. The diagram shows the amount of time needed
to produce the exhaustive set of features for a given maximum feature length
when pruning is off or on.

:-modeb(1, long(+car)).
:-modeb(1, notSame(+car, +car)).

will contain a feature
f(A):- hasCar(A,B),hasCar(A,C),long(C),long(B),notSame(B,C).

but it will not contain a feature with the body
hasCar(A,B),hasCar(A,C),long(B),long(C)

as such an expression would clearly be decomposable into two separate features.
We do not construct such decomposable expressions, as these are redundant for
the purpose of the subsequent search for rules with conjunctive antecedents.

The language constraint of undecomposability plays a major role: it enables
pruning the search for possible features without losing any solutions. As an
example, Figure 1 illustrates the speedup gained by the pruning on the East-West
Trains domain (evaluation on real-life data will be shown in the experimental
section).

In addition, other language constraints can be specified. These are: the maxi-
mum length of a feature (number of contained literals), maximum variable depth
[21] and maximum number of occurrences of a given predicate symbol. If con-
straints are not specified by the user, the first two acquire a default value while
the last is unlimited.

Unlike Aleph and Progol declarations, RSD does not use the # sign to denote
a constant-value argument. In the mentioned systems, constants are provided by
a single saturated example, while RSD extracts constants from all the input data
(examples). The user can instead utilize the special reserved property predicate
instantiate/1, which does not occur in the background knowledge, to specify a
variable that should be substituted with a constant during feature construction.
For example, from the modes

:-modeh(1, train(+train)).
:-modeb(1, hasCar(+train, -car)).

80 Nada Lavrač, Filip Železný, and Sašo Džeroski

:-modeb(1, hasLoad(+car, -load)).
:-modeb(1, hasShape(+load, -shape)).
:-modeb(*, instantiate(+shape)).

exactly one feature is generated:
f1(A) :- hasCar(A,B), hasLoad(B,C), hasShape(C,D), instantiate(D).

In the second step, after consulting the input data, f1 will be substituted by a
set of features, in each of which the instantiate/1 literal is removed and the
D variable is substituted with a constant making the body of f1 provable in the
data. Provided they contain a train with a rectangle load, the following feature
will appear among those created out of f1:

f11(A) :- hasCar(A,B), hasLoad(B,C), hasShape(C,rectangle).
A similar principle applies for features with multiple occurences of the
instantiate/1 literal. Arguments of this literal within the feature form a set of
variables ϑ; only those (complete) instantiations of ϑ making the feature’s body
provable on the input database will be considered.

However, not all such features will appear in the resulting set. For the sake of
efficiency, we do not perform feature filtering by a separate postprocessing proce-
dure, but rather discard certain features already during the feature construction
process described above. The following constraints are used: (a) no feature should
have the same value for all examples and (b) no two features should have the
same values for all examples. For the latter case, only the syntactically shortest
feature is chosen to represent the class of semantically equivalent features. In
addition, a minimum number of examples for which a feature has to be true can
be prescribed. This constraint is similar to the minimum support constraints in
mining frequent item sets.

4.2 Constraints in Subgroup Discovery

In the subgroup discovery phase, a language constraint employed is the pre-
scription of a maximal number of conditions/features in the description of a
subgroup.

Several evaluation functions are considered. These include accuracy, weighted
relative accuracy (WRAcc), significance, and area under the ROC curve. Accu-
racy and WRAcc are used in optimization constraints, i.e., RSD looks for rules
with high accuracy/WRAcc. In fact, they are used as heuristic functions in RSD.
Significance is used in evaluation constraints, i.e., one can prescribe a significance
threshold that rules have to satisfy (expressed as significance at e.g., 99% level).
WRAcc may be used in a similar fashion.

For lack of space we do not provide here a tabular summary of all employed
constraints and the ways of their setting, this can be however found in the RSD
user’s manual available from the above mentioned RSD download page.

5 Experiments

We have experimented with the well-known relational learning benchmark con-
cerning the Mutagenicity of chemicals and we have also applied RSD to the

Local Patterns 81

analysis of a real-life telecommunications dataset. The Mutagenesis data have
been described in detail in many sources, see e.g. [28]. The Telecommunication
application has been described by Železný et al. in [31,30]; next we give a brief
overview of the data.

5.1 Telecommunications

The data represent incoming calls (1995 items thereof) to an enterprize. Each
such call is answered by a human operator and in the usual case further trans-
ferred to an attendant distinguished by his/her line number. Further re-transfers
may also occur. Each sequence of such transfers is tracked by a computerized
exchange and related data are stored in a logging file. By a suitable transfor-
mation thereof, one may obtain a relation incoming/5, represented by ground
facts of the form incoming(date, time, caller, operator, result). The argu-
ment result either takes a constant value or is a recursively defined function,
so that result ∈ {talk, unavailable, transfer([ln1, ln2, ..., lnn], result)},
where ln1...lnn−1 denote line numbers to which unsuccessful attempts to trans-
fer have been made, and lnn the result of the last transfer attempt.

For example, the ground fact
incoming(date(10,18), time(13,37,29), [0,6,4,8,2,5,6,8,4,9], 32,
transfer([16,12],transfer([26],talk))).

describes a call from the number 0648256849 at 13:37:29 on 10/18 received by
the operator on line 32. The operator first tried to transfer the caller to line
16 without success, and then transferred him/her successfully to line 12. The
person on line 12 further redirected the caller to line 26. After a talk with line
26, the call was terminated.

We divide all instances of incoming transferred calls into classes determined
by the line to which the operator tried to transfer the caller first. We thus obtain
25 classes. Attributes of examples (the main table records) then consist of the
first four arguments of incoming/5 and the class attribute. Finding subgroups
interesting with respect to this class attribute may contribute to purposes of
decision support of the operator. Further, if the subgroup set has sufficient pre-
dictive power, it may partially or completely substitute the operator.

Let us now comment on two of the available background relations. The pred-
icate prefix(Number,Prefix) is true whenever the second (output) argument
is the prefix (of any length) of the first (input) argument. For instance, regarding
the example given above, prefix([0,6,4,8,2,5,6,8,4,9],[0,6,4]) is true.

This background predicate proved useful in previously published results, since
it is able to bind callers from the same area, city, company, office etc. The
predicate gives multiple possible outputs for a given input. When used as part
of a feature definition, it will be the job of the feature constructor to decide
which prefixes should be used (possibly in conjunction with other literals) to
generate features with acceptable coverage measures. Out of the prefixes kept,
the rule inducer chooses those that help identify interesting subgroups.

82 Nada Lavrač, Filip Železný, and Sašo Džeroski

Another background predicate prev attempt/6 reflects the fact that a line
desired by the caller may often be determined by looking at the caller’s recent
attempts to reach a person, i.e., by inspecting past records (w.r.t. the time-label
of the current example) in the incoming/4 relation. This problem setting is
thus not far from what is known as multi-instance learning [6], where relevant
attribute values describing an instance extend in multiple rows of a single table.

For example, the goal
prev attempt(date(10,18),time(13,37,29),
[0,6,4,8,2,5,6,8,4,9], Line, When, Result).

will succeed with the result
Line=10, When=today, Result = unavailable,

provided the caller 0648256849 failed to reach line 10 on 10/18 before 13:37:29.
Again, the prev attempt/6 may obviously yield multiple outputs for a given
instantiations of the input arguments.

5.2 Expert Analysis of Induced Subgroups: Evaluating Novelty

We present the descriptions of some of the discovered subgroup in Telecommu-
nication, with comments from the domain expert on the descriptions in Table 1
and the distributional characteristics of the subgroups.

Expert analysis of the induced rules shows that some of them identify novel
and interesting information. Especially revealing are the comments related to the
changes of class frequency associated with the rules. In the overall distribution,
calls to line 21 are most common. The expert comments that this reflects his
expectations, as the person at line 21 is a marketer, and people interested in
products call this line most frequently. In subgroup Tele1, there is (a) an increase
in line 21 frequency: clients not receiving an ordered package often wait until
Friday and then complain with line 21; and (b) a decrease in line 13 frequency:
the person at line 13 mostly collaborates with dealers who have less business on
Fridays. For subgroup Tele4 there is a) an increase in line 28 frequency: repeated
attempts to reach line 28, and (b) an increase in line 21 frequency: the person
at line 28 works as technical support for products sold by person on line 21.

The use of the undecomposability constraint and the pruning enabled thereby
greatly reduces the time necessary to generate the features. This reduction in-
creases with the maximum feature length, as illustrated in Figure 2.

5.3 Effects of Constraints on Feature Generation

The use of the other feature constraints, i.e., the minimum coverage, unique
coverage and incomplete coverage (the latter two are referred to as filtering)
reduces the number of features generated, as shown in Figure 3. In Mutagenesis,
the maximum feature length was set to 5 and the minimum feature coverage
to 20 instances, obtaining 42 different features. In the Telecom domain, we set
the maximum feature length to 8. In this case, using a minimum coverage of 20
instances yields 138 features.

Local Patterns 83

Table 1. Subgroup descriptions in the form H ← B [TP, FP], definitions of
used features, and subgroup interpretation including expert’s comments.

Tele1: line21(A) ← f40(A) [56,268]
f40(A):-call date(A,B),dow(B,fri).

Calls received on Fridays.
Expert’s evaluation: Not a novel information.

Tele2: line11(A) ← f132(A) [32,0]
f132(A):-ext number(A,B), prefix(B,[8,5,1,3,1,1,1,1]).

Calls received from number 85131111.
Expert’s explanation: The caller is the secretary’s husband. She does not have a
direct-access line, thus this call is transferred by an operator.
Expert’s evaluation: Novel information.
Remark. Although the last literal formally identifies a prefix of the calling
number, it is in fact the complete number of the caller.

Tele3: line21(A) ← f54(A) [81,254]
f54(A):-ext number(A,B),prefix(B,[0,4]).

Calls received from a number that starts with 04.
Expert’s explanation: Prefix 04 is too general (code covers a large area) to find
an explanation.
Expert’s evaluation: Novel information. Uncertain.

Tele4: line28(A) ← f7(A) [22,11]
f7(A):-call date(A,B),call time(A,C),

ext number(A,D), prev attempt(B,C,D,[2,8], last hour, unavailable).

Calls received from a caller who has in the last hour attempted to directly (not
through an operator) reach line 28, which was unavailable.
Expert’s explanation: It is plausible that people try line 28 as the second attempt
when line 21 is unavailable. Subgroup probably mostly covers people with technical
difficulties with a product sold by person on line 21.
Expert’s evaluation: Novel information.

5.4 Results of Subgroup Discovery

An example feature in the Mutagenesis domain is f12(A):-atm(A,B),atm chr
(B,C),lteq c(C,0.142) expressing that a drug contains an atom with charge
less or equal to 0.142, or f31(A):-benzene(A,B),benzene(A,C), connected(
C,B), expressing the presence of two connected benzene rings in the chemical. In
telecommunications, an example feature is f99(A):-ext number(A,B),prefix(
B,[0,4,0,7]), meaning that the caller’s number starts with 0407. Another fea-
ture is f115(A):- call date(A,B),call time(A,C),ext number(A,D), prev
attempt(B,C,D,[3,1], today,unavailable), meaning that the caller (of the
current call) has today tried to reach line 31, which was unavailable.

With these features, we use the RSD rule induction algorithm with altered
covering strategy and heuristic function to produce sets of subgroup-describing
rules.

The characteristics of the discovered rules are shown in Table 2. Algo refers to
the combination of search heuristic (A-accuracy, W-WRacc (weighted relative
accuracy)) and covering algorithm (C-covering, W-WeCov (weighted covering

84 Nada Lavrač, Filip Železný, and Sašo Džeroski

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5

N
um

be
r

of
 e

xi
st

in
g

fe
at

ur
es

 fo
r

M
ut

a.

Max feature length [literals]

Number of features

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 1 2 3 4 5

T
im

e
[s

]

Max feature length [literals]

Pruning OFF
Pruning ON

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14

N
um

be
r

of
 e

xi
st

in
g

fe
at

ur
es

 fo
r

T
el

e.

Max feature length [literals]

Number of features

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

T
im

e
[s

]

Max feature length [literals]

Pruning OFF
Pruning ON

Fig. 2. The number of existing features (left) and the effect of undecomposability
enabled pruning in the syntactic feature construction on efficiency (right) in the
Mutagenesis (top) and Telecommunication (bottom) domain.

with γ = 1)). S = significance, C = coverage, A = area under ROC curve. R : F
= average number of rules/class : average number of features per rule. R′ : F′ =
same as above, only rules on covex hull are considered. The rule generation for
a given class is terminated if the search space has been completely explored or
10 subgroup rules have been generated for that class in Telecommunication (5
in Mutagenesis). Reported results are averages and standard deviations from a
10-fold stratified cross-validation procedure.

The most significant observation about the results in Table 2 is that the
WRAcc heuristic very significantly improves the performance with respect to
the other accuracy heuristics, in terms of all three quality aspects.

Overall, the combination of WRAcc with the strategy of example weighting
yields the best performance. This agrees with the findings in [17], where a more
extensive empirical evaluation was conducted on a collection of (non-relational)
subgroup-discovery problems, comparing the CN2 algorithm with CN2 incorpo-
rating the WRAcc heuristic, and further the CN2-SD system (which incorporates
the WRAcc heuristic and the example weights). These three algorithms roughly
correspond to the methods we denote above (in Table 2) as AC, WC, and WW,
respectively. The combination of the accuracy heuristic with example weighting
(AW) seems not to perform well in the domains considered.

Local Patterns 85

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 20 40 60 80

N
um

be
r

of
 p

ro
du

ce
d

fe
at

ur
es

 fo
r

M
ut

a.

Minimum feature coverage [instances]

Filtering ON
Filtering OFF
No constants

0

20

40

60

80

100

120

140

160

180

1 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 p

ro
du

ce
d

fe
at

ur
es

 fo
r

T
el

e.

Minimum feature coverage [instances]

Filtering ON
Filtering OFF
No constants

Fig. 3. The effect of using the constraint of unique and incomplete coverage
(“Filtering ON” line) vs. ignoring this constraint (“Filtering OFF” line) and the
user-adjustable minimum-coverage constrain (left-to-right decay) for Mutagene-
sis (left) and Telecommunication (right). The “No constants” curve (independent
of the horizontal axis) corresponds to the number of features before instantia-
tions to constants (before Step 2 of feature construction), this number is high
in Mutagenesis due to many features inprovable with any instantiation to con-
stants.

Table 2. Characteristics of subgroup-describing rules obtained by the RSD rule
induction algorithm in the Mutagenesis and Telecom domains.

Mutagenesis

Performance Complexity
Algo S C A R : F R′ : F′

AC 1.99 11.33% 0.69 10.00 : 2.16 10.00 : 2.16
(0.92) (3.74) (0.07) (0.00 : 0.07) (0.00 : 0.07)

AW 1.33 7.62% 0.58 10.00 : 2.50 10.00 : 2.50
(1.05) (4.88) (0.06) (0.00 : 0.11) (0.00 : 0.11)

WC 4.22 35.81% 0.86 3.70 : 1.73 2.30 : 1.62
(1.22) (6.44) (0.06) (0.82 : 0.33) (0.48 : 0.22)

WW 7.48 40.58% 0.90 10.00 : 2.63 6.50 : 2.43
(1.28) (4.74) (0.04) (0.00 : 0.07) (0.97 : 0.11)

Telecommunication

Performance Complexity
Algo S C A R : F R′ : F′

AC 2.90 0.37% 0.55 7.36 : 2.39 6.88 : 2.47
(0.38) (0.05) (0.02) (0.12 : 0.04) (0.19 : 0.04)

AW 2.25 0.25% 0.55 9.96 : 2.56 9.60 : 2.61
(0.52) (0.04) (0.02) (0.07 : 0.03) (0.07 : 0.03)

WC 11.29 4.98% 0.67 6.12 : 2.17 5.20 : 2.28
(1.71) (0.54) (0.02) (0.16 : 0.04) (0.16 : 0.04)

WW 11.99 4.02% 0.70 9.64 : 2.06 6.68 : 2.29
(1.05) (0.41) (0.01) (0.12 : 0.01) (0.20 : 0.03)

86 Nada Lavrač, Filip Železný, and Sašo Džeroski

6 Conclusions

This paper presents an approach to relational subgroup discovery, whose origins
are based on the recent developments in subgroup discovery [33,9] and propo-
sitionalization through first-order feature construction [8,13,18]. It presents the
algorithm RSD which transforms a relational subgroup discovery problem to a
propositional one, through efficiency-conscious first-order feature construction.
Efficiency is boosted through the use of mode declarations and constraints used
for pruning the search in the space of possible features.

Four variants of the RSD algorithm have been tested, by combining the
standard accuracy search heuristic used in the construction of individual rules,
with the standard covering algorithm used in the construction of a set of rules.
The WRAcc heuristic combined with the weighted covering algorithm is the
preferred combination (due to an appropriate tradeoff between rule significance,
coverage and complexity).

We have successfully applied the RSD algorithm in the Mutagenesis bench-
mark and the Telecom domain, a real-life dataset from a telecommunications
company. These results have been evaluated as meaningful by the domain ex-
pert. Both the description of subgroups and their distributional characteristics
make sense in many cases.

The idea of incrementally extending the feature set in dependence on the
quality of the discovered subgroups, seems very much worth investigating in
further work.

Acknowledgments

We are grateful to Peter Flach for the collaboration in the development of the CN2-SD

algorithm and in the genesis phase of the RSD algorithm. We are grateful also to Jǐŕı

Źıdek, Atlantis Telecom s.r.o. for the comments on the Telecom subgroups discovered.

Nada Lavrač and Sašo Džeroski acknowledge the support of the Slovenian Ministry

of Education, Science and Sport and the cInQ (Consortium on discovering knowledge

with Inductive Queries) project, funded by the European Commission. Filip Železný is

supported by the Czech Ministry of Education grant 1K04108.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A.I. Verkamo. Fast discovery
of association rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R.
Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, 307–
328, MIT Press, 1996.

2. J.M. Aronis and F.J. Provost. Efficiently constructing relational features from
background knowledge for inductive machine learning. In U.M. Fayyad and R.
Uthurusamy, editors, AAAI Workshop on Knowledge Discovery in Databases, 347–
358, AAAI Press, 1994.

Local Patterns 87

3. J.M. Aronis, F.J. Provost and B.G. Buchanan. Eploiting background knowledge in
automated discovery. In E. Simoudis, J. Han and U. Fayyad, editors, Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining,
355–358, AAI Press, 1996.

4. R. Bayardo, editor. Constraints in data mining. Special Issue of SIGKDD Explo-
rations, 4(1), 2002.

5. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:
261–283, 1989.

6. L. De Raedt. Attribute value learning versus inductive logic programming: The
missing links (extended abstract). In D. Page, editor, Proceedings of the 8th Inter-
national Conference on Inductive Logic Programming, 1–8. Springer, 1998.

7. T. Fawcett. Using rule sets to maximize ROC performance. In Proceedings of the
2001 IEEE International Conference on Data Mining, 131–138, 2001.

8. P. Flach and N. Lachiche. 1BC: A first-order Bayesian classifier. In S. Džeroski
and P. Flach, editors, Proceedings of the 9th International Workshop on Inductive
Logic Programming, 92–103. Springer, 1999.

9. D. Gamberger and N. Lavrač. Expert guided subgroup discovery: Methodology
and application. Journal of Artificial Intelligence Research, 17: 501–527, 2002.

10. M. Garofalakis and R. Rastogi. Scalable data mining with model constraints.
SIGKDD Explorations, 2(2):39–48, 2000.

11. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11): 58–64, 1996.

12. W. Klösgen. Explora: A multipattern and multistrategy discovery assistant. In
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, editors, Ad-
vances in Knowledge Discovery and Data Mining, 249–271, MIT Press, 1996.

13. S. Kramer, N. Lavrač and P. Flach. Propositionalization approaches to relational
data mining. In S. Džeroski and N. Lavrač, editors, Relational Data Mining, 262–
291. Springer, 2001.

14. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

15. N. Lavrač, P. Flach and B. Zupan. Rule evaluation measures: A unifying view. In:
S. Džeroski and P. Flach, editors, Proceedings of the 9th International Workshop
on Inductive Logic Programming, 174–185, Springer, 1999.

16. N. Lavrač, P. Flach, B. Kavšek and L. Todorovski. Adapting classification rule
induction to subgroup discovery. In V. Kumar et al., editors, Proceedings of the
IEEE International Conference on Data Mining, 266–273. IEEE Computer Society,
December 2002.

17. N. Lavrač, B. Kavšek, P. Flach and L. Todorovski. Subgroup discovery with CN2-
SD. Journal of Machine Learning Research, 5: 153–188, 2004.

18. N. Lavrač and P. Flach. An extended transformation approach to inductive logic
programming. ACM Transactions on Computational Logic, 2(4): 458–494, 2001.

19. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3): 241–258, 1997.

20. D. Michie, S. Muggleton, D. Page and A. Srinivasan. To the international comput-
ing community: A new East-West challenge. Technical report, Oxford University
Computing laboratory, Oxford, UK, 1994.

21. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3–4): 245–286, 1995.

88 Nada Lavrač, Filip Železný, and Sašo Džeroski

22. F.J. Provost and T. Fawcett. Robust classification systems for imprecise envi-
ronments. In Proceedings of the Fifteenth National Conference on Artificial In-
telligence and Tenth Innovative Applications of Artificial Intelligence Conference,
706–713, MIT Press, 1998.

23. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26: 99–146,
1997.

24. L. De Raedt, H. Blockeel, L. Dehaspe and W. Van Laer. Three companions for
data mining in first order logic. In S. Džeroski and N. Lavrač, editors, Relational
Data Mining, 105–139. Springer, 2001.

25. G. Piatetsky-Shapiro and C. Matheus. The interestingness of deviation. In: Pro-
ceedings of the AAAI-94 Workshop on Knowledge Discovery in Databases, 25–36,
1994.

26. A. Silberschatz and A. Tuzhilin. On subjective measures of interestingness in
knowledge discovery. In: Knowledge Discovery and Data Mining, 275–281, 1995.

27. A. Srinivasan and R.D. King. Feature construction with inductive logic program-
ming: A study of quantitative predictions of biological activity aided by structural
attributes. In S. Muggleton, editor, Proceedings of the 6th International Workshop
on Inductive Logic Programming, 89–104. Springer, 1996.

28. A. Srinivasan, S. Muggleton, M.J.E. Sternberg and R.D. King. Theories for muta-
genicity: A study in first-order and feature-based induction. Artificial Intelligence,
85(1–2): 277-299, 1996.

29. L. Todorovski, P. Flach and N. Lavrač. Predictive performance of weighted relative
accuracy. In D.A. Zighed, J. Komorowski and J. Zytkow, editors, Proceedings of the
4th European Conference on Principles of Data Mining and Knowledge Discovery,
255–264. Springer, 2000.

30. F. Železný, P. Mikšovský, O. Štěpánková, and J. Źıdek. ILP for automated tele-
phony. In J. Cussens and A. Frisch, editors, Proceedings of the Work-in-Progress
Track of the 10th International Conference on Inductive Logic Programming, 276–
286, 2000.

31. F. Železný, J. Źıdek, and O. Štěpánková. A learning system for decision support
in telecommunications. In Proceedings of the First International Conference on
Computing in an Imperfect World, Belfast 4/2002. Springer, 2002.

32. S. Wrobel. An algorithm for multi-relational discovery of subgroups. In J. Ko-
morowski and J. Zytkow, editors, Proceedings of the First European Symposion on
Principles of Data Mining and Knowledge Discovery, 78–87, Springer, 1997.

33. S. Wrobel. Inductive logic programming for knowledge discovery in databases. In
S. Džeroski and N. Lavrač, editors, Relational Data Mining, 74–101. Springer,2001.

34. S. Wrobel and S. Džeroski. The ILP description learning problem: Towards a
general model-level definition of data mining in ILP. In K. Morik and J. Herrmann,
editors, Proceedings Fachgruppentreffen Maschinelles Lernen (FGML-95), 44221
Dortmund, Univ. Dortmund, 1995.

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 89-97, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Visualizing Very Large Graphs Using Clustering
Neighborhoods

Dunja Mladenic and Marko Grobelnik

 Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
{Dunja.Mladenic, Marko.Grobelnik}@ijs.si

http://kt.ijs.si/Dunja/, http://kt.ijs.si/Marko/

Abstract. This paper presents a method for visualization of large graphs in a
two-dimensional space, such as a collection of Web pages. The main contribu-
tion here is in the representation change to enable better handling of the data.
The idea of the method consists from three major steps: (1) First, we transform
a graph into a sparse matrix, where for each vertex in the graph there is one
sparse vector in the matrix. Sparse vectors have non-zero components for the
vertices that are close to the vertex represented by the vector. (2) Next, we per-
form hierarchical clustering (eg., hierarchical K-Means) on the set of sparse
vectors, resulting in the hierarchy of clusters. (3) In the last step, we map hier-
archy of clusters into a two-dimensional space in the way that more similar
clusters appear closely on the picture. The effect of the whole procedure is that
we assign unique X and Y coordinates to each vertex, in a way those vertices or
groups of vertices on several levels of hierarchy that are stronger connected in a
graph are place closer in the picture. The method is particular useful for power
distributed graphs. We show applications of the method on real-world examples
of visualization of institution collaboration graph and cross-sell recommenda-
tion graph.

1 Introduction

When trying to find some regularity in the data, one can apply different methods
depending on specific goals, data properties, resources etc. Visualization of the data is
welcome in most cases and it sometimes can be of great help in getting top-level
(zoomed-out) or local (zoomed in) insights in the data. Most of the methods devel-
oped in the field of Knowledge Discovery in Databases [1], [2], [6], [7], [13] are
focused on finding global regularities that explain most of the instances. Recently, it
was recognized that there is a lack of recognition of importance of local patterns and
thus a lack of appropriate methods for finding local patterns [5]. There are several
attempts to define local patters, for the purpose of clarification, let’s just say that local
patterns can potentially be found in the data as a kind of outliers or regularities on a
local level that do not propagate to the global level (thus not capture by a global mod-
els of the data).

This paper addresses a problem of finding regularities including such as local pat-
terns in the data represented as a graph. We propose a novel graph visualization ap-

90 Dunja Mladenic and Marko Grobelnik

proach especially suitable for very large graphs. We see graph as a fundamental data
structure and apply data-analytic techniques for dealing with graphs. Due to the visual
nature of the results, it is difficult to impose a strict evaluation method on our ap-
proach. Thus we provide illustrative examples of our graph visualization results.

Related work deals mainly with relaxation methods minimizing some kind of ad-
hoc aesthetic function which usually work fine for up-to several hundreds vertices,
but to the best of our knowledge, there is no efficient generic solution for visualiza-
tion of large graphs. Good source of related approaches is an annual “Graph Drawing
Competition” [8],[9].

The paper is structured as follows. Section 2 provides problem and approach de-
scription. Section 3 gives example results on two large real-world graphs. Discussion
is provided in Section 4.

2 Problem and Approach Description

The problem addressed in this paper is visualization of very large graphs, where we
are given a graph with typically over 10,000 vertices. The goal is to draw the graph in
a reasonable time and draw it nicely using some ad-hoc visual aesthetics. Our empha-
sis is on proposing an appropriate approach with the required time complexity, while
evaluation of the aesthetics of the graphs is out of the scope of this paper.

The main idea of the proposed approach comes from the area of document collec-
tion visualization, where we have developed a couple of methods for visualization of
hierarchically organized set of documents [3]. The important step that we propose
here is to transform the given graph into a set of sparse vectors, where for each vertex
in the graph we create one sparse vector (Section 2.1). On that set of sparse vectors
we then perform hierarchical clustering, so that each leaf in the hierarchy includes
just one instance. For hierarchical clustering we use bisecting k-means that is an effi-
cient top-down approach to clustering (Section 2.2). The next important step that we
have originally developed and tested on document collection visualization is to apply
“tiling” technique on the hierarchy of clusters. The important property of “tiling” is
that each instance in the hierarchy leaf gets X and Y coordinates uniquely assigned
(Section 2.3). This combination of “tiling” and clustering performs the same function
as multidimensional scaling used in traditional approaches. Finally, based on the
assigned X and Y coordinates, we draw the graph in 2D space on the screen.

2.1 Transforming Graph into Sparse Vectors

In order to get sparse vectors from a graph, we represent a graph with N vertices as a
NxN sparse matrix. The matrix is constructed so that the Xth row gives information
about the Xth vertex and has nonzero components for the columns representing verti-
ces from the neighborhood of vertex X. We have defined neighborhood of a vertex to
contain all the vertices at the distance of up to d steps from the vertex. Consequently,
the Xth row has non-zero component in the Xth column and all the other columns that
represent the neighbors at step 1, 2, 3, … d. Intuitively, the Xth row numerically

Visualizing Very Large Graphs Using Clustering Neighborhoods 91

represents the neighborhood of the Xth vertex within the graph, with the values calcu-
lated using the following formula d21 , where d is the distance in the number of
steps from the Xth vertex. Figure 1 illustrates the graph transformation on an exam-
ple graph.

5

7

8

9 10

0

1

2

3

4

6

11 10.50.250.250.2511

10.50.2510

0.2510.250.50.259

0.510.250.50.50.250.250.250.58

0.2510.50.257

0.2510.250.56

0.250.510.250.255

0.250.50.2510.50.50.254

0.250.510.253

0.250.50.2512

0.50.50.250.50.2510.51

0.250.250.50.250.50.250.250.510

11109876543210

transforming
graph into

matrix

Fig. 1. Illustration of the graph transformation into a sparse matrix where the rows represent
instances (vertices) and columns represent neighborhood with weights relative to the distance
from the vertex in that row. Here we have set the maximal distance to d= 2. Notice that the
diagonal elements have weight 1 (showing that the each vertex is in its own neighborhood).
The dashed lines point out neighboring vertices and the corresponding weights for vertex la-
beled as 2. It has four non-zero elements in its sparse vector representation (1, 0.25, 0.5, 0.25)
corresponding to four vertices (labeled in the graph as 2, 3, 4, 8)

2.2 Hierarchical Clustering

We perform hierarchical clustering on the set of sparse vectors representing graph
vertices using top-down bisecting k-means computationally efficient, as applied for
document clustering [12]. Starting with all the instances being in one cluster, we split
the cluster into two clusters using 2-means clustering (see Figure 2 for illustration of
the clustering results). Next the same procedure is repeated for each of the two newly
obtained clusters and recursively further down the hierarchy. We perform divisive
clustering until the size of the clusters is one (one instance per cluster). Each cluster
on the transformed graph data represents an approximate clique in the graph; there-
fore we can view the clustering of vertices as generating hierarchy of approximate

92 Dunja Mladenic and Marko Grobelnik

cliques in the original graph. We base a distance between the sparse vectors on cosine
similarity, a measure commonly used in information retrieval and text-mining. Cosine
similarity between the two vectors 21, DD is defined as follows,

j k kj

i i

xx

ixx
DDSim

22

21
21),(. (1)

To illustrate the results of the applied hierarchical clustering, in Figure 2 we show

the hierarchy of vertices of our example graph presented in Figure 1. For instance, in
the first step of the clustering, vertices 3, 5, 8 were separated from the rest. The k-
means clustering uses randomized approach to select the starting points. In our case
these are the two randomly selected instances that serve as centroids of the future two
clusters. The remaining instances are then assigned to one of the two centroids (clus-
ters) based on the cosine similarity between their sparse vector representation and the
centroid. This means that running the algorithm several times with different random
seed can produce different results. Thus the usual setting is to do that and based on
the clustering quality measure choose among the alternative results.

Notice that the hierarchy of vertices in Figure 2 is only a step towards drawing a
large graph and should not be considered as a final output. Here the vertices are clus-
tered based on their similarity in the proposed representation of graph with sparse
vectors.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

0, 1, 2, 4, 6, 7, 9, 10, 11
3, 5, 8

0, 2, 4, 7, 10, 11 1, 6, 9

0, 2, 4, 7, 11 10

2, 4, 11 0, 7

0 7

2

42, 11

11

1, 9

9

6

1

3, 8 5

3 8

Fig. 2. The result of our hierarchical clustering applied on sparse vectors representing the graph
vertices obtained on the example graph given Figure 1

Visualizing Very Large Graphs Using Clustering Neighborhoods 93

2.3 Tiling Based Visualisation

The tilling technique is known for structured data from data visualization community,
eg., [11]. We have previously adapted the technique for textual data to enable effi-
cient visualization of document collection [3]. Here, we apply the same technique for
visualization of graphs as follows.

Given is the hierarchy of instances and a fixed size two dimensional area (on the
screen). The main idea is to split the rectangular viewing area into sub-areas accord-
ing to the size of the clusters. In the case of visualizing a hierarchy of clusters, we
generate an image on several levels, giving a top (bird) view on the whole hierarchy.
The technique takes care that each cluster has uniquely determined position in the
picture and in the extreme case, where the size of clusters is 1, each cluster (each
individual instance) has determined a numerical X and Y coordinates. We use this
effect of explicitly assigning coordinates to the instances to position vertices in a
graph. Since our graph vertices are grouped using clustering based on their closeness
in the original graph, we expect that also the instances (representing the original
graph vertices) on the picture will stay close, if they are neighbor in the original
graph.

Fig. 3. Illustration of tilling based visualization approach. Each block includes set of instances
with blocks having similar instances placed closer in the picture. In the first step the vertical
division of the area is performed in the left part (in this illustration containing about 60% of the
instances) and the right part (in this illustration containing about 40% of the instances). Then
each of the two parts is further split horizontally and then vertically (then, assume that the
stopping criterion is met, so we stop the process)

Starting with the root node of the hierarchy the whole rectangular drawing area
partitioned to the both children proportionally to the number of instances assigned to
them via hierarchical clustering (see Figure 3 for illustration of the area partitioning).
This procedure is performed recursively down to the leaf nodes. In general, in tilling
based visualization, we stop the splitting of the drawing area based on some stopping
criterion, such as the minimum number of instances in the cluster. While in document
visualization, we usually stop when the number of documents in the cluster is higher

94 Dunja Mladenic and Marko Grobelnik

then one (maybe 10% of the document collection size), in the case of graph drawing
the stopping criterion is set to having one instance in the cluster. Namely, only in this
way we can at the end assign a distinct position to each of the graph vertices.

Figure 4 illustrates the result of our approach on drawing our example graph. No-
tice that for Figure 1, the same graph was manually drawn with nice placement of the
vertices just for presenting it in the paper, but that information is not provided to the
system. The system is given only usual, text representation of the graph, listing verti-
ces and their neighbors, as shown in Figure 4. Notice that vertices that are in the same
cluster (eg., 3,8) are not necessary placed close to each other.

0, [1,6,8]
1 [0,7,9,10]
2 [4]
3 [4]
4 [2,3,8]
5 [8]
6 [0]
7 [1]
8 [0,4,5,11]
9 [1]
10 [1]
11 [8]

Fig. 4. The result of graph visualization of the same example graph that was used for illustra-
tion of the approach in Figure 1 and Figure 2

3 Results on Two Large Graphs

To show the results of the proposed approach we used two large graphs that we have
constructed. Both were processed using the procedure described in Section 2. The
first graph is the collaboration graph between the institutions participating in Euro-
pean projects in the area of “New methods of work”, where we had about 900 institu-
tions (vertices). We have used a part of the graph generated in the analyses of the
database of research and development projects funded within information technology
European program in years 2000-2005. The main items in the research project data-
base were textual description of each project and the list of institutions participating
in the project. There, the goal was to find various informative insights into the re-
search project database, which would enable better understanding of the past dynam-
ics and provide ground for better planning of the future research project programs.

Visualizing Very Large Graphs Using Clustering Neighborhoods 95

The main emphasis was on the analysis of various aspects of research collaboration
between different objects including institutions participating in the projects [4]. Fig-
ure 5 shows the results of drawing that graph using the approach proposed in this
paper, zoomed-in around the German Fraunhofer Institute (the middle vertex in Fig-
ure 5)

Fig. 5. The result of graph visualization (from the system user interface) on the collaboration of
of institutions participating in European projects in the are of New methods of work. The pro-
gram was instructed to zoom-in around one of the most connected institutions, the German
Fraunhofer Institute

The second graph is the Amazon cross-sell graph (from year 2000) having about

10,000 books connected into a graph and capturing information about behavior of
their customers. The two vertices in the graph (two books) are connected if there was
a customer that both books. This kind of information can be further used by recom-
mendation systems (via collaborative filtering) for making suggestion on potentially
interesting books (cross-selling). Collaborative filtering in general is based on the
assumption that similar users have similar preferences. It can detect relationships
between items that are linked implicitly through the groups of users accessing them.
Figure 6 shows output of our system on the Amazon cross-sell graph of books, where
we have zoomed-in the part of the graph containing Java programming books. Titles
placed together are such as, “Concurrent Programming in Java”, ”Concurrency: State

96 Dunja Mladenic and Marko Grobelnik

Model & Java Programming”, “Practical Java Programming Language Guide”, “Java
in Practice: Design Symbols and Idioms for Effective Java”.

Fig. 6. The result of graph visualization on the Amazon cross-sell graph, zoom-in the part of
Java programming books

4 Discussion

We have proposed a novel method for visualization of very large graphs, as we see
graph as a fundamental data structure. We trust that many problems can be repre-
sented as graphs and that visualization of them can offer some insights in the data and
particularly help in spotting local patterns. We expect that for finding local patterns,
our approach can serve as one of the first steps for getting familiar with the data and
in most cases should be combined with other approaches for further data analysis.

In our approach, we have applied data-analytic techniques for dealing with graphs.
The original graph is transformed to a set of sparse vectors, one vector for each ver-
tex. Then, hierarchical clustering is applied on the vectors and finally the hierarchy of
clusters is used to assign coordinates in 2-D space to each graph vertex. We have
provide results on two real-world example graphs, one from the domain of collabora-
tion network between institutions and the other from the book cross-selling domain.
In order to evaluate the results of our approach some kind of analytic and HCI
evaluation of the method should be applied giving the same graphs to several systems
and comparing their output as well as efficiency.

Visualizing Very Large Graphs Using Clustering Neighborhoods 97

There are several directions that can be followed in the future work. One direction
is on extending the proposed approach to deal with special types of graphs (e.g.
power distributed), for instance, by include PageRank [10] weights. The other possi-
ble direction is in performing experiments to study the influence of different
neighborhood weighting functions (see Equation 1).

References

1. Duda, R. O., Hart, P. E. and Stork, D. G.: Pattern Classification 2nd edition, WileyInter-
science (2000)

2. Fayyad, U., Grinstein, G. G. and Wierse, A. (eds): Information Visualization in Data Mining
and Knowledge Discovery, Morgan Kaufmann (2001)

3. Grobelnik, M., and Mladeni , D.: Efficient visualization of large text corpora. Proceedings
of the seventh TELRI seminar. Dubrovnik, Croatia (2002)

4. Grobelnik, M., and Mladeni , D.: Analysis of a database of research projects using text
mining and link analysis. In Mladeni , D., Lavrac, N., Bohanec, M., Moyle, S. (eds.), Data
mining and decision support : integration and collaboration, (The Kluwer international se-
ries in engineering and computer science, SECS 745), pp. 157-166, Boston; Dordrecht;
London: Kluwer Academic Publishers (2003)

5. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining (Adaptive Computation and
Machine Learning), MIT Press (2001)

6. Hastie, T., Tibshirani, R. and Friedman, J. H.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer Series in Statistics, Springer Verlag (2001)

7. Mitchell, T.M.: Machine Learning. The McGraw-Hill Companies, Inc. (1997)
8. Mutzel, P., Jünger, M., Leipert, S. (eds.): Graph Drawing : 9th International Symposium,

GD-2001, Lecture Notes in Computer Science, Vol. 2265. Springer-Verlag, Berlin Heidel-
berg New York (2002)

9. North, S. (ed): Symposium on Graph Drawing GD'96, Lecture Notes in Computer Science,
Vol. 1190. Springer-Verlag, Berlin Heidelberg New York (1997)

10. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing
order to the web. Tech. Rept. SIDL-WP-1999-020, Stanford University, January (1998)

11. Robbins, K.S., Gorman, M.: Fast Visualization Methods for Comparing Dynamics: A Case
Study in Combustion, Proceedings of the 11th IEEE Visualization 2000 Conference, IEEE
Computer Society (2000)

12. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques.
In Proceedings of KDD Workshop on Text Mining, pp. 109–110 (2000)

13. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann (1999).

Features for Learning Local Patterns in

Time-Stamped Data

Katharina Morik and Hanna Köpcke

Univ. Dortmund, Computer Science Department, LS VIII
morik@ls8.informatik.uni-dortmund.de

http://www-ai.cs.uni-dortmund.de

Abstract. Time-stamped data occur frequently in real-world databases.
The goal of analysing time-stamped data is very often to find a small
group of objects (customers, machine parts,...) which is important for the
business at hand. In contrast, the majority of objects obey well-known
rules and is not of interest for the analysis. In terms of a classification
task, the small group means that there are very few positive examples
and within them, there is some sort of a structure such that the small
group differs significantly from the majority. We may consider such a
learning task learning a local pattern.
Depending on the goal of the data analysis, different aspects of time are
relevant, e.g., the particular date, the duration of a certain state, or the
number of different states. From the given data, we may generate features
that allow us to express the aspect of interest. Here, we investigate the
aspect of state change and its representation for learning local patterns in
time-stamped data. Besides a simple Boolean representation indicating a
change, we use frequency features from information retrieval. We transfer
Joachim’s theory for text classification to our task and investigate its fit
to local pattern learning. The approach has been implemented within the
MiningMart system and was successfully applied to real-world insurance
data.

1 Introduction

When designing a knowledge discovery application, the choice of the representa-
tion of examples and hypotheses is the most important issue. Choosing the right
representation for hypotheses has been called “model selection”. Learnability is
a statement about a pair of example and hypotheses representation: we want to
represent examples and hypotheses such that concepts of interest can be learned
in at least polynomial time. This constrains the search for an appropriate repre-
sentation on one side. The majority of known solutions to model selection deals
with global models. What, if we are looking for local patterns? On the other
side, the search is constrained by the given data. Transforming them into an ap-
propriate representation is an effort, which we want to minimize. Moreover, not
every example representation which is well suited for a learning algorithm can
be constructed from given raw data. Figure 1 shows the chain of processes that

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 98–114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Features for Learning Local Patterns in Time-Stamped Data 99

Learning
Results

Learning

? Learnability

Time-stamped
Data

Feature generation TCat Model

Fig. 1. Representation – from raw data to hypotheses

lead to the learning results. What are the characteristics of raw data that es-
timate whether we can construct an example representation for which, in turn,
we know learnability results for a certain learning algorithm? Concerning the
example representation, our standard approach to feature selection requires a
subset of given features to separate the data according to the target concepts.
What, if the learning task has to cope with an internal structure where attributes
occurring in the target concept do occur in the remaining examples as well? It
is our goal to develop guidelines for the choice of an appropriate example repre-
sentation. We want to estimate before the transformation, whether it enlarges or
shrinks the representation space and whether it favours a certain learning algo-
rithm, or is appropriate for many of them. In terms of Figure 1, we are concerned
with the question mark between raw data and the example language.

In this paper, we generalize the applicability of Thorsten Joachim’s TCat
model which gives clear learnability bounds for text classification using the sup-
port vector machine (SVM) [1]. The TCat model shares characteristics with local
patterns (cf. Section 2). It refers to the bag-of-words representation of texts. It
is straight forward to construct this example representation from texts. Now,
we found that frequency features as used in the bag-of-words representation can
effectively be constructed from time-stamped data, too. Moreover, we developed
a heuristic that efficiently estimates for raw data, whether the transformation
to frequency features will shrink or enlarge the data space, and whether it fits
the distribution to which TCat models fit. For learning local patterns from time-
stamped data we found that the representation enhanced the learning results of
several algorithms, when compared to using the raw data.

The paper is organised as follows. We first state a working hypothesis on the
notion of local patterns (Section 2). Then, we clarify the time aspects in time-
stamped data (Section 3). For the aspect of state changes and their frequency, we
show how to transform a relational database into one with frequency features for
state change. We illustrate the procedure by real-world insurance data (Section
4). Then we can make use of the transformed data for learning a local pattern.
We conducted several experiments with insurance data (Section 5.1). The good
learning results are – for the SVM – explained by Joachim’s theory. We describe
the (transformed) insurance data by a TCat model (Section 6). We then focus on
the the step from raw data to the TCat model. Section 6.1 characterizes the raw
data with respect to the transformation and presents a heuristic which estimates
the effect of the transformation. A program calculates a TCat model for given
data set. Experiments with articifial data sets investigate the impact of the local
patterns characteristics to TCat models and learning results (Section 7). This

100 Katharina Morik and Hanna Köpcke

completes the chain from the time-stamped raw data to SVM learning of local
patterns.

2 Local Patterns

Local patterns are not yet clearly defined. Common to all definitions is that
we want to learn about rare events in a large collection. In other words, the
distribution is skewed, offering few instances of the local pattern and very many
instances of a global model. Local patterns occur with a low frequency (cf. the
papers in [2]). Several authors have characterised local patterns as small regions
with high deviations from a global model, e.g., [3], [4], [5]. Paul Cohen’s definition
of local patterns as “low frequency and low entropy” also relates the local pattern
to the regular (global) frequency and entropy values. Moreover, it points at the
internal stucture of local patterns or their examples. His learning task is to
detect boundaries of episodes in a sequence. The comparison of frequency and
entropy of one n-gram with those of all other n-grams of the same length delivers
the standardized frequency and entropy [6]. Then, a local pattern is detected
between two maximally (standardized) frequent n-grams and directly following
an n-gram with highest (standardized) entropy. Episodes are complex patterns
with an internal structure, which is represented here by the moving n-grams.
Multimedia data (e.g., texts), time series, and DNA data are other instances
of complex data types. Arno Siebes models the structure within complex data
types using wavelets [4]. Transforming data into wavelets allows him to compute
the similarity between examples which can then be used for further analysis.
The wavelet transformation can be considered feature generation for structured
data. We may find an internal structure also within a simple attribute-value
representation. Interesting are the characteristics which Thorsten Joachims has
found for texts in the bag of words representation [1]: The characteristic that
several attribute values indicate the class membership has been called a high level
of redundancy. The characteristic that instances do not (necessarily) share an
attribute value being valid has been called heterogenous use of terms. In addition,
we find that attribute values occurring frequently in one pattern do so in the
remaining other observations, as well. We may call this an overlap. Redundancy,
heterogenity, and overlap are characteristics of the internal structure of (text)
instances.

As a working hypothesis, we end up with three characteristics of local pat-
terns:

– Local patterns describe rare events. In other words, the distribution is skewed,
offering few instances of the local pattern and very many instances of a global
model.

– Given a dataset for which a global model can be determined, local patterns
deviate significantly from the global model.

– Local patterns describe data with an internal structure. Redundancy, het-
erogenity, and overlap are aspects of internal structure.

Features for Learning Local Patterns in Time-Stamped Data 101

3 Time-Stamped Data

Time-related data include time series (i.e. equidistant measurements of one pro-
cess), episodes made of events from one or several processes, and time intervals
which are related (e.g., an interval overlaps, precedes, or covers another interval).
Time-stamped data refer to a calendar with its regularities. They can easily be
transformed into a collection of events, can most often be transformed into time
intervals, and sometimes into time series.

Time series are most often analysed with respect to a prediction task, but
also trend and cycle recognition belong to the statistical standard (see for an
overview [7,8]). Following the interest in very large databases, indexing of time
series according to similarity has come into focus [9,10]. Clustering of time series
is a related topic (cf. e.g., [11]) as is time series classification (cf. e.g., [12,13]). The
abstraction of time series into sequences of events or time intervals approximates
the time series piecewise by functions (so do [14,15,16]). Other segmentation
methods are presented in [17].

Event sequences are investigated in order to predict events or to determine
correlations of events [18,19], [20,21,22]. The approach of Frank Höppner ab-
stracts time series to time intervals and uses the time relations of James Allen
in order to learn episodes [23,24]. The underlying algorithm is one of learning
frequent sets as is Apriori [25]. The resulting episodes are written as association
rules. Other basic algorithms (e.g., regression trees) can be chosen as well [26],
delivering logic rules with time annotations. Also inductive logic programming
can be applied. Episodes are then written as a chain logic program, which ex-
presses direct precedence by chaining unified variables and other time relations
by additional predicates [27,28].

Time-stamped data have been investigated in-depth in [29]. They offer a
framework for time granularities and specialised databases for temporal data.
However, from a practical point of view, building up a temporal database before
analysing the data ist too demanding for a knowledge discovery application.
Hence, we prefer to transform the given data into an appropriate representation
for data analysis. The given data are usually stored in a multirelational database
where some attributes offer a time stamp of the same granularity (i.e., minute,
hour, day, week, year). If time stamps in the stored data are equidistant, data
actually are time series. We exclude this case, here. As was already stated above,
time-stamped data can most often be transformed into events and time intervals.
It is hard to select the appropriate representation [30]. In general, we have the
following options:

Snapshot: We ignore the time information and reduce the data to the most
current state. This state can be written as one or several events. It may well
happen that such a snapshot already suffices for learning.

Events with time intervals: We aggregate time points to time intervals where
attribute values are similar enough (segmentation). For nominal attributes,
it is straight forward to construct time intervals from the start and end time
of each attribute value. In addition, we might want to represent relations

102 Katharina Morik and Hanna Köpcke

between the intervals. Learning algorithms which make good use of time
information (episode learning) can then be applied.

Feature generation: Time aspects are encoded as regular attributes of the
examples such that any learning algorithm can be applied. Simple encod-
ings are seasons simply stated by flags and vectors, where the attributes
summarize the history preceding a target event.

In this paper, we investigate feature generation for learning from time-stamped
data. For each attribute, we represent whether the attribute changed at all over
the recorded time span (Boolean), or how often it has changed (frequency fea-
ture). The latter allows us to link our results to the TCat model for text classi-
fication [1].

4 Using TF/IDF Features

Time-stamped data often describe the same object (customer, contract, en-
gine...) by several rows in a database table, each for one of the object’s states.
Figure 2 illustrates this by an excerpt of an insurance contract database table,
where each contract (VVID) is described by several attributes. Whenever an at-
tribute’s value has changed, a new row is added. The snapshot approach would

Fig. 2. Excerpt from the contract table

just extract the most current row for a contract. The time interval approach
would use the “begin” attribute (VVWIvon) and the “end” attribute (VVWIbis)
and indicate the other attributes from a row as an event. A Boolean represen-
tation would just state whether an attribute had been changed over the lifetime
of a contract, or not. This reduces the data space a lot. If we transform the raw

Features for Learning Local Patterns in Time-Stamped Data 103

data (about contracts) into a frequency representation, we possibly condense the
data space in an appropriate way. We simply order the rows according to the
data and count, how often an attribute’s value changes, giving us the frequency
count of that attribute. Figure 3 illustrates the procedure. However, we must

Fig. 3. Calculating the term frequency for the original attributes

exclude the frequencies of those changes that are common to all contracts, e.g.
because of a change of law. The feature from statistical text representation for-
mulates exactly this: term frequency and inverse document frequency (TFIDF)
[31].

Term frequency here describes how often a particular attribute ai of cj , the
contract or one of its components, has been changed.

tf(ai, cj) =‖ {x ∈ time points | ai of cj changed} ‖
The document frequency here corresponds to the number of contracts in

which ai has been changed. The set of all contracts is written C. The document
frequency is just the number of contracts with a term frequency greater than 0.

df(ai) =‖ {cj ∈ C | ai of cj changed} ‖

Hence the adaptation of the TF/IDF text feature to contract data becomes for
each contract cj :

tfidf(ai) = tf(ai, cj)log
‖ C ‖
df(ai)

5 Local Pattern Learning

Now that we have introduced frequency features for the aspect of change in
time-stamped databases, we can bring together the local pattern learning and
the time-stamped data. We first report on local pattern learning from a real-
world database (Section 5.1). Then we present experiments with artificial data
sets (Section 7).

104 Katharina Morik and Hanna Köpcke

5.1 Local Patterns in Insurance Data

In the course of enhanced customer relationship management, the Swiss Life
insurance company investigated opportunities for direct marketing [32]. A more
difficult task was to predict surrender in terms of a customer buying back his
life insurance. We worked on knowledge discovery for the classification into early
termination or continuation of policies. The task was clearly one of local pattern
learning:

– Only 7.7% of the contracts end before their end date. Hence, the event to
be predicted is rare.

– Internal studies at the insurance company found that for some attributes
the likelihood of surrender differed significantly from the overall likelihood.
The TCat model of the data (6) also clearly indicates this.

– Contract data have an internal structure.
• First studies showed that frequent sets in the group of continued contract

were frequent sets in the group of terminated contracts, as well [33]
(overlap).

• In each contract, there are several attributes indicating surrender or
continuation (redundancy).

• We also found that within the group of terminated contracts, there were
those which do not share attributes (heterogenous use of terms).

Hence, the internal structure of contracts shares characteristics with text
data.

The given anonymous database consists of 12 tables with 15 relations between
them. The tables contain information about 217,586 policies and 163,745 cus-
tomers. If all records referring to the same policy and component (but at a
different status at different times) are counted as one, there are 533,175 com-
ponents described in the database. We selected 14 attributes from the original
database. 13 of them were transformed as described above (Section 4). One of
them is the reason for a change of a contract. There are 121 different reasons. We
transformed these attribute values into binary attributes a. Thus we obtained
13+121=134 features describing changes of a contract. To calculate the TF/IDF
values for these binary features we considered the history of each contract. For
the 121 newly created features we counted how often they occurred within the
mutations. Figure 4 shows how the calculation was done. We compared the
learning results on this generated representation to those on the selected origi-
nal data for different learning algorithms. We used 10-fold cross validation on a
sample of 10,000 examples. In order to balance precision and recall, we used the
F -measure:

Fβ =
(β2 + 1)Prec(h)Rec(h)
β2Prec(h) + Rec(h)

(1)

where β indicates the relative weight between precision and recall. We have set
β = 1, weighting precision and recall equally. Table 1 shows the results. For all
algorithms, the frequency features are better suited than the original attributes.

Features for Learning Local Patterns in Time-Stamped Data 105

Fig. 4. Calculating the term frequency for the newly created features

6 Characterizing the Data by the TCat Model

The transformation into a frequency representation allows to model the data
as TCat-concepts. TCat-concepts model text classification tasks such that their
learnability can be proven [1].

Definition of TCat-concepts: ”The TCat-concept

TCat([p1 : n1 : f1], ..., [ps : ns : fs])

describes a binary classification task with s sets of disjoint features. The
i-th set includes fi features. Each positive example contains pi occurrences
of features from the respective set, and each negative example contains ni

occurrences. The same feature can occur multiple times in one document.”
[1]

In order to describe the newly constructed data set in terms of TCat-concepts, we
need to partition the feature space into disjoint sets of positive indicators, nega-
tive indicators and irrelevant features. For the insurance application, we selected
features by their odds ratio. There are 2 high-frequency features that indicate
positive contracts (surrender) and 3 high-frequency features indicating negative
contracts (no surrender). Similarly, there are 3 (4) medium-frequency features
that indicate positive (negative) contracts. In the low-frequency spectrum there
are 19 positive indicators and 64 negative indicators. All other features are as-
sumed to carry no information. Since the same feature can occur in pi as well as
in ni, listing the features would not show the difference. The internal structure
prohibits this. However, the number of occurrences clearly shows the significant
difference between continued and early terminated contracts.

To abstract from the details of particular contracts, it is useful to define what
a typical contract for this task looks like. An average contract has 8 features.
For positive examples, on average 25% of the 8 features come from the set of
the 2 high-frequency positive indicators while none of these features appear in
an average negative contract. The relative occurrence frequencies for the other

106 Katharina Morik and Hanna Köpcke

Apriori

TF/IDF attributes Original attributes

Accuracy 93,48% 94,3%

Precision 56,07% 84,97%

Recall 72,8% 18,39%

F-Measure 63,35% 30,24%

J4.8

TF/IDF attributes Original attributes

Accuracy 99,88% 97,82%

Precision 98,64% 96,53%

Recall 99,8% 70,08%

F-Measure 99,22% 81,21%

mySVM

TF/IDF attributes Original attributes

Accuracy 99,71% 26,65%

Precision 97,06% 8,73%

Recall 98,86% 100%

F-Measure 97,95% 16,06%

Naive Bayes

TF/IDF attributes Original attributes

Accuracy 88,62% 87,44%

Precision 38,55% 32,08%

Recall 78,92% 77,72%

F-Measure 51,8% 45,41%

Table 1. Results comparing different learning algorithms and feature spaces

features are given in Table 2. Applying these percentages to the average number
of features, this table can be directly translated into the following TCat-concept.
Note, that pi and ni indicate frequencies. Hence, the second high-frequency set
of features consists of three attributes, which occur one time in positive and
three times in negative examples.

TCat ([2 : 0 : 2], [1 : 4 : 3], # high frequency
[3 : 1 : 3], [0 : 1 : 4], # medium frequency
[1 : 0 : 19], [0 : 1 : 64], # low frequency
[1 : 1 : 39] # rest

)

The learnability theorem of TCat-concepts [1] bounds the expected generaliza-
tion error of an unbiased support vector machine after training on n examples
by

R2

n + 1
a + 2b + c

ac − b2
(2)

Features for Learning Local Patterns in Time-Stamped Data 107

high frequency medium frequency low frequency
2 pos. 3 neg. 3 pos. 4 neg. 19 pos. 64 neg. 39 rest

pos. contract 25% 12.5% 37.5% 0% 12.5% 0% 12.5%

neg. contract 0% 50% 12.5% 12.5% 0% 12.5% 12.5%

Table 2. Composition of an average positive and an average negative contract

where R2 is the maximum Euclidian length of any feature vector in the training
data, and a, b, c are calculated from the TCat-concept description as follows:

a =
s∑

i=1

p2
i

fi
b =

s∑
i=1

pini

fi
c =

s∑
i=1

n2
i

fi

a = 5.41, b = 2.326, c = 5.952 can be calculated directly from the data.
The Euclidian length of the vectors remains to be determined. We want to see
whether the data transformation condenses the data properly. The data space
with the original 15 attributes could be such that each attribute is changed m
times giving us m

√
15 – the largest case. The smallest case is that only one

attribute is changed m times giving us the small data size of m. For texts, Zipf’s
law gives the approximation [34]: if one ranks the words by their frequency,
the r-th most frequent words occur 1

r times the frequency of the most frequent
words. We can apply this law for natural language to collections c of natural
language texts. Experimental data suggests that Mandelbrot distributions [35]

TFi =
c

(k + r)φ

with parameters c, k and φ provide a better fit. For the contract data Figure 5
plots term frequency versus frequency rank. The line is an approximation with
k = −0.6687435 and φ = 1.8. We see that (as is true for text data) also the
contract data can be shrinked by the frequency transformation.

R2 =
d∑

r=1

(
c

(r + k)2

)2

(3)

We bound R2 ≤ 37 according to the Mandelbrot distribution and come up with
the bound of the expected error according to equation 3 of 37·0.5978

n+1 , consequently
after training on 1000 examples the model predicts an expected generalization
error of less than 2.2%. It turns out that the transformed data sets can easily be
separated by a support vector machine. Hence, the good learning results (0.6%
error) are explained.

6.1 Characterizing the Raw Data

In order to ease the design process of knowledge discovery applications we should
know before the transformation whether the data space will be condensed, or

108 Katharina Morik and Hanna Köpcke

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

N
um

be
r

of
 O

cc
ur

re
nc

es

Rank by Frequency

Ranked Frequencies
217586/(x-0.6687435)**1.8

Fig. 5. Distribution of term frequencies in the contract data on a log log scale.
The line is an approximation of the observed curve using a Mandelbrot distri-
bution.

not. In other words, we want to measure the sparseness of data which can be
estimated by the maximum Euclidian length of a vector. We order the original
table with time stamps such that the states of the same individual (e.g., contract)
are in succeeding rows. We consider each individual c a vector and calculate the
frequency of changes for each of its n attributes a1...an in parallel “on the fly”
We can then determine in one database scan the maximum value of the Euclidian
length of a vector:

R̂ = max

⎛⎝√√√√ n∑
i=1

tf(ai, cj)2

⎞⎠ (4)

If R̂ ≤ m
√

n
2 where m is the maximum frequency, the data will be condensed

and learning will be fast. In the insurance case n = 14 and m = 15 so that
R̂ = 22, 913 which is in fact less than 15

√
14

2 = 28.6.
Of course, the heuristic does not tell anything about the learnability within

this representation. What we control with this heuristic is the transformation
into the example representation.

7 Experiments with Artificial Data

In order to abstract away from the real-world application, we conducted ex-
periments with artificial datasets. We created 10,000 examples each with 100
attributes in both, binary and TF/IDF representation. The mySvm was run
with a 10-fold cross validation.

Features for Learning Local Patterns in Time-Stamped Data 109

7.1 Frequency of Changes Vs. Particular Changes

Datasets were generated according to two target concepts:

1. The change of particular attributes determined the classification.
2. The number of changes determined the target concept.

Of course, what should happen, is that the TF/IDF representation is best suited
for the second target concept.

We wanted to check, whether the TF/IDF representation makes the dataset
robust with respect to skewedness and local structure. In other words, we tested
the characteristic of local patterns.

We systematically varied the skewedness of the data, positive examples being
50% (not skewed), 25%, 12.5%, or 6.25% (skewed) of the data.

The first concept could perfectly be learned from the binary representation,
being robust with respect to skewedness (100% F-measure). Clearly, no internal
structure is preventing here the selection of a feature. The TF/IDF representa-
tion is little less perfect (95.03% F-measure for 6.25% positive examples). See
Figure 6 for details. The heuristic states that the data size becomes little. As
is shown in Figure 6, the second concept could not be learned from the bi-
nary representation, when the distribution becomes skewed. The default is too
dominant, hence the recall comes to zero. For the TF/IDF representation, the
learning results degraded gracefully when the distribution became more skewed
from 93.17% to 88.98% F-measure. The heuristic dissuades from the transfor-
mation in all cases, although the binary representation is only superior learning
the first concept. Indeed, as already stated, the larger data space is necessary for
the skewed second concept. The heuristic does not inform us about learnability.
Hence, when learning the second concept from skewed data fails using the binary
representation, the transformation is tried, anyway.

Varying the sparseness of the data from 50 attributes being changed over 25 to
5 attributes being changed, we found again that using the binary representation
the first concept could be learned perfectly. In contrast, the second concept could
only be learned successfully using the TF/IDF representation. See Figure 6 for
details.

7.2 Internal Structures

We also varied the local structure within the artificial data. We used the TCat
model to generate datasets, varying pi and ni within fi. Note, that for a group
of fi (high frequency, medium frequency, or low frequency) pi of them can be
arbitrarily chosen. Hence, it could happen that fi

pi
individuals do not share any

attribute. This fraction indicates how heterogenous the use of terms is. We var-
ied the heterogenous use of terms from 4 individuals which could be completely
different but be in the same class (little heterogenity) to 20 individuals being dis-
joint but in the same class. If we keep the sparseness throughout all experiments
being 20 from 100 attributes given, we automatically vary the redundancy from
0.5 in the little heterogenous case to 0.1 in the extremely heterogenous case. The

110 Katharina Morik and Hanna Köpcke

redundancy can be expressed by pi

fi
or ni

fi
for indicative attributes (here:medium

and low frequency attributes). Tabelle 3 gives an overview of the TCat models
used for generating datasets. Figure 6 shows the achieved learning results.

Not heterogenous, re-
dundant, no overlap

Little heterogeneous,
redundant, little over-
lap

Medium heterogenous,
little redundant, no
overlap

heterogenity 20
5

= 4 20
4

= 5 20
2

= 10
redundancy 10

20
= 0.5 10

20
= 0.5 4

20
= 0.2

TCat model [10 : 10 : 20], [10 : 10 : 20], [16 : 16 : 20]
[5 : 0 : 20], [0 : 5 : 20], [4 : 1 : 20], [1 : 4 : 20], [2 : 0 : 20], [0 : 2 : 20],
[5 : 0 : 20], [0 : 5 : 20], [4 : 1 : 20], [1 : 4 : 20], [2 : 0 : 20], [0 : 2 : 20],

error bound 1.33% 3.3% 3%

High heterogenous, lit-
tle redundant, no over-
lap

Medium heterogenous,
redundant, high overlap

heterogenity 20
1

= 20 20
3

= 6.6
redundancy 2

20
= 0.1 10

20
= 0.5

TCat model [18 : 18 : 20] [10 : 10 : 20]
[1 :0 : 20], [0 : 1 : 20], [3 : 2 : 20], [2 : 3 : 20],
[1 : 0 : 20], [0 : 1 : 20], [3 : 2 : 20], [2 : 3 : 20],

error bound 72.4% 28%

Table 3. TCat models used for generating datasets

The TCat model tells that the learning results should decrease gracefully
when increasing heterogenous use of terms or overlap. The actual learning re-
sults show that only the overlap decreases the learning result and only for the
binary representation. The TF/IDF representation is robust to the variation
of both, heterogenous use of terms and overlap. This means that the TF/IDF
representation is particularly appropriate for the internal structure within local
patterns.

8 Conclusion

The design of a knowledge discovery application is supported by learnability
results as soon as the appropriate example representation has been found. The
design support missing was a principled approach to when to generate which
features for a given dataset. The transformation of given (raw) data to the ex-
ample representation is a matter of feature generation and selection [36,37,38].
The automatic selection of features becomes difficult whenever no proper subset
of features distinguishes positive from negative examples. This is particularly
the case, if the target concept has an internal structure in terms of the heteroge-
nous use, redundancy, and overlap of attributes. If, in addition, the distribution
offers a majority of negative and very few positive examples, we are confronted

Features for Learning Local Patterns in Time-Stamped Data 111

5 25 50 100

sparseness

60

70

80

90

100

F
-M

ea
su

re

change of particular attributes / binary representation
change of particular attributes / TFIDF representation
number of changes / binary representation
number of changes / TFIDF representation

(a) varying sparseness

6.25 12.5 25 50

skewedness

0

20

40

60

80

100

F
-M

ea
su

re

change of particular attributes / binary representation
change of particular attributes / TFIDF representation
number of changes / binary representation
number of changes / TFIDF representation

(b) varying skewedness

1/4 2/3

overlap

60

70

80

90

100

F
-M

ea
su

re

binary representation
TFIDF representation

(c) varying overlap

Fig. 6. Learning results

with local pattern learning. The TCat model covers such an internal structure,
is robust with respect to skewed distributions, and offers learnability results for
the SVM. Hence, if we form a TCat model for our data, we can estimate how
well learning will succeed. However, the TCat model is based on frequency fea-
tures. Calculating frequency features for texts is a standard approach. Now, we
have shown how time-stamped data can be transformed into frequency features.
Moreover, experiments with artifical datasets indicate that

– the TF/IDF representation is superior to the binary one if attributes indica-
tive within the positive and negative example sets overlap.

– The TF/IDF representation outperforms the binary one in case of sparse
data.

– the TF/IDF representation is robust with respect to skewed data
– the TF/IDF representation is robust with respect to redundancy or het-

erogenous use of terms.

112 Katharina Morik and Hanna Köpcke

The true difference between the binary and the frequency representation we
found in the experiments is given by the skewedness and the sparseness of the
data. TF/IDF outperforms the binary representation clearly, if the data are
sparse or the distribution is skewed and the concept to be learned is about the
number of changes.

The heuristic and the generation of frequency features for time-stamped data
with respect to the aspect of state change has been implemented within the Min-
ingMart system [39]. The calculation of a TCat model for given data has been
implemented as a JAVA program to be integrated into the YALE system [38],
which has run the cross validation and mySvm runs. This supports the design
of knowledge discovery applications. The method can easily be applied to other
time-stamped datasets. If a general model can be found, the binary represen-
tation will be appropriate. For a local pattern, the TF/IDF representation is
better suited. Given a time-stamped database and the task of classification (not
that of episode learning), one can now proceed systematically from the smallest
to successively larger data spaces. First, try learning with the snapshot repre-
sentation, then try the binary representation, and finally generate the frequency
features and calculate the error bound using the TCat model. Our approach
only covers a certain type of raw data, namely those describing non-equidistant
state changes. It focuses on finding local patterns, characterised by a skewed
distribution, separable patterns, and an internal structure which does not allow
to select a proposer subset of features. More research on the transformation from
raw data to example representations is needed.

Acknowledgment We thank Jörg-Uwe Kietz and Regina Zücker for their informa-
tion about the insurance practice and the anonymised database. For stimulating
discussions on the support vector machine, mathematics, and representation lan-
guages we thank Stefan Rüping wholeheartedly.

References

1. Joachims, T.: Learning to Classify Text using Support Vector Machines. Volume
668 of Kluwer International Series in Engineering and Computer Science. Kluwer
(2002)

2. Hand, D., Bolton, R., Adams, N.: Determining hit rate in pattern search. In Hand,
D., Adams, N., Bolton, R., eds.: Pattern Detection and Discovery. Springer (2002)

3. Hand, D.: Pattern detection and discovery. In Hand, D., Adams, N., Bolton, R.,
eds.: Pattern Detection and Discovery. Springer (2002)

4. Siebes, A., Struzik, Z.: Complex data mining using patterns. In Hand, D., Adams,
N., Bolton, R., eds.: Pattern Detection and Discovery. Springer (2002)

5. Morik, K.: Detecting interesting instances. In Hand, D.J., Adams, N.M., Bolton,
R.J., eds.: Proceedings of the ESF Exploratory Workshop on Pattern Detection
and Discovery. Volume 2447 of LNAI., Berlin, Springer Verlag (2002) 13–23

6. Paul Cohen, Brent Heeringa, Niall M. Adams: An unsupervised algorithm for
segmenting categorical timeseries into episodes. In Hand, D.J., Adams, N.M.,
Bolton, R.J., eds.: Pattern Detection and Discovery. Volume 2447 of Lecture notes
in computer science., London, UK, ESF Exploratory Workshop, Springer (2002)
1–12

Features for Learning Local Patterns in Time-Stamped Data 113

7. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis. Forecasting and
Control. Third edn. Prentice Hall, Englewood Cliffs (1994)

8. Schlittgen, R., Streitberg, B.H.J.: Zeitreihenanalyse. 9. edn. Oldenburg (2001)
9. Keogh, E., Pazzani, M.: Scaling up dynamic time warping for datamining appli-

cations. In: Proceedings of the 6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM Press (2000) 285–289

10. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence
databases. In: Proceedings of the 4th International Conference on Foundations of
Data Organization and Algorithms. Volume 730., Springer (1993) 69–84

11. Oates, T., Firoiu, L., Cohen, P.R.: Using dynamic time warping to bootstrap hmm-
based clustering of time series. In: Sequence Learning ? Paradigms, Algorithms,
and Applications. Volume 1828 of Lecture Notes in Computer Science. Springer
Verlag (2001) 35?–52

12. Geurts, P.: Pattern extraction for time series classification. In: Pro-ceedings of
the 5th European Conference on the Principles of Data Mining and Knowledge
Discovery. Volume 2168 of Lecture Notes in Computer Science., Springer (2001)
115–127

13. Lausen, G., Savnik, I., Dougarjapov, A.: Msts: A system for mining sets of time
series. In: Proceedings of the 4th European Conference on the Principles of Data
Mining and Knowledge Discovery. Volume 1910 of Lecture Notes in Computer
Science., Springer Verlag (2000) 289–298

14. Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P.: Rule Discovery from
Time Series. In Agrawal, R., Stolorz, P.E., Piatetsky-Shapiro, G., eds.: Proceedings
of the Fourth International Conference on Knowledge Discovery and Data Mining
(KDD-98), New York City, AAAI Press (1998) 16 – 22

15. Guralnik, V., Srivastava, J.: Event detection from time series data. In: Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining, San Diego, USA (1999) 33 – 42

16. Morik, K., Wessel, S.: Incremental signal to symbol processing. In Morik, K.,
Kaiser, M., Klingspor, V., eds.: Making Robots Smarter – Combining Sensing and
Action through Robot Learning. Kluwer Academic Publ. (1999) 185 –198

17. Salatian, A., Hunter, J.: Deriving trends in historical and real-time continuously
sampled medical data. Journal of Intelligent Information Systems 13 (1999) 47–71

18. Agrawal, R., Psaila, G., Wimmers, E.L., Zäıt, M.: Querying shapes of histories. In:
Proceedings of 21st International Conference on Very Large Data Bases, Morgan
Kaufmann (1995) 502–514

19. Domeniconi, C., shing Perng, C., Vilalta, R., Ma, S.: A classification approach for
prediction of target events in temporal sequences. In Elomaa, T., Mannoila, H.,
Toivonen, H., eds.: Principles of Data Mining and Knowledge Discovery. Lecture
Notes in Artificial Intelligence, Springer (2002)

20. Blockeel, H., Fürnkranz, J., Prskawetz, A., Billari, F.: Detecting temporal change
in event sequences: An application to demographic data. In De Raedt, L., Siebes,
A., eds.: Proceedings of the 5th European Conference on the Principles of Data
Mining and Knowledge Discovery. Volume 2168 of Lecture Notes in Computer
Science., Springer (2001) 29–41

21. Mannila, H., Toivonen, H., Verkamo, A.: Discovering frequent episode in sequences.
In: Procs. of the 1st Int. Conf. on Knowledge Discovery in Databases and Data
Mining, AAAI Press (1995)

22. Mannila, H., Toivonen, H., Verkamo, A.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1 (1997) 259–290

114 Katharina Morik and Hanna Köpcke

23. Höppner, F.: Discovery of Core Episodes from Sequences. In Hand, D.J., Adams,
N.M., Bolton, R.J., eds.: Pattern Detection and Discovery. Volume 2447 of Lecture
notes in computer science., London, UK, ESF Exploratory Workshop, Springer
(2002) 1–12

24. Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23
(1984) 123–154

25. Agrawal, R., Imielinski, T., Swami, A.: Database mining: A performance perspek-
tive. IEEE Transactions on Knowledge and Data Engineering 5 (1993) 914–925

26. Nunez, M.: Learning patterns of behavior by observing system events. In: Procs.
of the European Conference on Machine Learning. Lecture notes in Artificial In-
telligence, Springer (2000)

27. Klingspor, V., Morik, K.: Learning understandable concepts for robot navigation.
In Morik, K., Klingspor, V., Kaiser, M., eds.: Making Robots Smarter – Combining
Sensing and Action through Robot Learning. Kluwer (1999)

28. Rieger, A.D.: Program Optimization for Temporal Reasoning within a Logic Pro-
gramming Framework. PhD thesis, Universität Dortmund, Dortmund, Germany
(1998)

29. Bettini, C., Jajodia, S., Wang, S.: Time Granularities in Databases, Data Mining,
and Temporal Reasoning. Springer (2000)

30. Morik, K.: The representation race - preprocessing for handling time phenomena.
In de Mántaras, R.L., Plaza, E., eds.: Proceedings of the European Conference on
Machine Learning 2000 (ECML 2000). Volume 1810 of Lecture Notes in Artificial
Intelligence., Berlin, Heidelberg, New York, Springer Verlag Berlin (2000)

31. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval.
Information Processing and Management 24 (1988) 513–523

32. Kietz, J.U., Vaduva, A., Zücker, R.: Mining Mart: Combining Case-Based-
Reasoning and Multi-Strategy Learning into a Framework to reuse KDD-
Application. In Michalki, R., Brazdil, P., eds.: Proceedings of the fifth International
Workshop on Multistrategy Learning (MSL2000), Guimares, Portugal (2000)

33. Fisseler, J.: Anwendung eines Data Mining-Verfahrens auf Versicherungsdaten.
Master’s thesis, Fachbereich Informatik, Universität Dortmund (2003)

34. G.K.Zipf: Human Behavior and the Principle of Least Effort: An Introduction to
Human Ecology. Addison-Wesley (1949)

35. Mandelbrot, B.: A note on a class of skew distribution functions: Analysis and
critique of a paper by H.A.Simon. Informationi and Control 2 (1959) 90 – 99

36. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence 97 (1997) 273–324

37. Liu, H., Motoda, H.: Feature Extraction, Construction, and Selection: A Data
Mining Perspective. Kluwer (1998)

38. Ritthoff, O., Klinkenberg, R., Fischer, S., Mierswa, I.: A hybrid approach to feature
selection and generation using an evolutionary algorithm. Technical Report CI-
127/02, Collaborative Research Center 531, University of Dortmund, Dortmund,
Germany (2002) ISSN 1433-3325.

39. Morik, K., Scholz, M.: The MiningMart Approach to Knowledge Discovery in
Databases. In Zhong, N., Liu, J., eds.: Intelligent Technologies for Information
Analysis. Springer (2004)

Boolean Property Encoding for Local Set

Pattern Discovery: An Application to Gene
Expression Data Analysis

Ruggero G. Pensa and Jean-François Boulicaut

INSA Lyon
LIRIS CNRS UMR 5205

F-69621 Villeurbanne cedex, France
{Ruggero.Pensa,Jean-Francois.Boulicaut}@insa-lyon.fr

Abstract. In the domain of gene expression data analysis, several re-
searchers have recently emphasized the promising application of local
pattern (e.g., association rules, closed sets) discovery techniques from
boolean matrices that encode gene properties. Detecting local patterns
by means of complete constraint-based mining techniques turns to be an
important complementary approach or invaluable counterpart to heuris-
tic global model mining. To take the most from local set pattern mining
approaches, a needed step concerns gene expression property encoding
(e.g., over-expression). The impact of this preprocessing phase on both
the quantity and the quality of the extracted patterns is crucial. In this
paper, we study the impact of discretization techniques by a sound com-
parison between the dendrograms, i.e., trees that are generated by a
hierarchical clustering algorithm on raw numerical expression data and
its various derived boolean matrices. Thanks to a new similarity measure,
we can select the boolean property encoding technique which preserves
similarity structures holding in the raw data. The discussion relies on sev-
eral experimental results for three gene expression data sets. We believe
our framework is an interesting direction of work for the many applica-
tion domains in which (a) local set patterns have been proved useful, and
(b) Boolean properties have to be derived from raw numerical data.

1 Introduction

This volume is dedicated to local pattern detection. It has been motivated by the
need for a better characterization of what is local pattern detection and what
are the main research challenges in this area. We contribute to this objective by
considering the exciting application domain of transcription module discovery
from gene expression data. In this molecular biology context, the goal is to
identify sets of genes which seem to be co-regulated, associated with the sets of
biological situation which seems to trigger the co-regulation.

The state-of-the-art is that global patterns like partitions can provide some
useful information and suggest some of the transcription modules. We are how-
ever interested by the intrinsic limitations of these approaches, e.g., their heuris-
tic nature or the lack of unexpectedness of the findings. We strongly believe

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 115–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 Ruggero G. Pensa and Jean-François Boulicaut

that complete extractions of local patterns which satisfy a given conjunction of
constraints (e.g., a minimal frequency constraint or a maximality constraint) are
an invaluable and complementary approach to suggest unexpected but relevant
patterns, i.e., putative transcription modules.

Let us now introduce the application domain and our contribution. Thanks
to a huge research effort and technological breakthroughs, one of the challenges
for molecular biologists is to discover knowledge from data generated at very
high throughput. For instance, different techniques (including microarray [1] and
SAGE [2]) enable to study the simultaneous expression of (tens of) thousands of
genes in various biological situations. The data generated by those experiments
can be seen as expression matrices in which the expression level of genes (rows)
is recorded in various biological situations (columns). A toy example of some
microarray data is the matrix in Tab. 1a.

1 2 3 4 5

a -1 6 0 12 9
b 3 -2 3 -3 1
c 0 5 -1 6 6
d 4 -1 2 -2 -1
e -3 9 1 10 6
f 5 -3 3 -6 0
g 4 -4 3 -7 0
h -2 2 -2 8 5

1 2 3 4 5

a 0 1 0 1 1
b 1 0 1 0 1
c 0 1 0 1 1
d 1 0 1 0 0
e 0 1 0 1 1
f 1 0 1 0 1
g 1 0 1 0 1
h 0 0 0 1 1

1 2 3 4 5

a 0 0 0 1 0
b 1 0 1 0 0
c 0 0 0 1 1
d 1 0 0 0 0
e 0 0 0 1 0
f 1 0 0 0 0
g 1 0 0 0 0
h 0 0 0 1 0

(a) (b) (c)

Table 1. A gene expression matrix (a) with two derived boolean matrices (b
and c)

Once large gene expression datasets are available, biologists have to drop the
traditional one-to-one approach to gene expression data analysis and crucially
need for Knowledge Discovery in Databases techniques (KDD). Among the clas-
sical KDD approaches, classification techniques (i.e., learning a classifier from
data which, for example, can predict a cancer diagnosis according to individual
gene expression profiles) have been intensively studied (see, e.g., [3] for a collec-
tion of recent contributions). In this paper, we do not consider such problems.
We are interested in descriptive techniques which provides either global patterns
like partitions (clustering) or local patterns like co-regulated sets of genes and/or
sets of situations.

The use of hierarchical clustering (see, e.g., [4]) is indeed quite popular among
practitioners. Genes are grouped together according to similar expression pro-
files. The same can be done on biological situations. Thanks to the appreciated
vizualization component introduced with [4], biologists can identify some puta-
tive transcription modules. Practitioners do not use only hierarchical clustering
but also most of the classical clustering techniques. A common characteristic of

Boolean Property Encoding for Local Set Pattern Discovery 117

these techniques is that global patterns like partitions are extracted by means of
a heuristic search. They provide “global pictures” of similarity structures. Not
only the heuristic nature can lead to different results for different experiments
but also, the fact we get global patterns, i.e., which hold in the whole data, leads
to rather expected findings. Our thesis is that unexpected patterns are a priori
interesting and that they are typically local ones, i.e., they hold in only a part of
the data. Therefore, looking for collections of local patterns in gene expression
data appears as a promising and complementary approach. The last 5 years, a
major research sub-domain in data mining has concerned the design of efficient
and complete constraint-based mining tools on boolean data, also called trans-
actional data by some authors. The completeness assumption means that every
pattern from the pattern language which satisfies the defined constraints has to
be returned (e.g., every frequent set, every closed set, every frequent and closed
set which does not contain a given item). In general, and this is the case for our
work, non heuristic methods are used.

To apply these techniques for gene expression data analysis, we have to en-
code boolean gene expression properties, e.g., over-expression, strong variation,
co-regulation. Tab. 1b and Tab. 1c are two data sets derived from the toy mi-
croarray data from Tab. 1a. Once such boolean data sets are available, it is possi-
ble to look for putative synexpression groups (see [5]) by computing the popular
frequent sets (frequent sets of situations in a matrix Genes × Situations and
frequent sets of genes in its transposition). Given the number of genes, we can
alternatively compute condensed representations of the frequent sets, e.g., the
frequent closed sets [6,7,8]. Deriving association rules from synexpression groups
has been studied as well [9,10]. Furthermore, putative transcription modules can
be provided by computing the so-called formal concepts (see, e.g., [11,12,13]).
Also, constraint-based mining of concepts has been considered [14,15]. Notice
that the collection of every formal concept which can be extracted from large
real gene expression matrices can be considered as a collection of overlapping
clusters on either the genes or the situations. The global picture is not there but
every locally strong association (associated closed sets, see Section 3) has been
captured.

So far, very few studies have concerned the quality of gene expression prop-
erty encoding, i.e., a kind of feature construction phase. This is a critical step
because its impact on both the quantity and the quality of the extracted patterns
is crucial.

If S denotes the set of biological situations and P denotes the set of genes,
the expression properties can be encoded into r ⊆ P×S. (gi, oj) ∈ r denotes that
gene i has the encoded expression property in situation j. Different expression
properties might be considered. Without loss of generality, we consider that
only one expression property is encoded for each gene, which means that we can
talk indifferently of genes or gene expression properties. Generally, encoding is
performed according to some discretization operators that, given user-defined
parameters, transform each numerical value from raw gene expression data into
one boolean value per gene property. Many operators can be used that typically

118 Ruggero G. Pensa and Jean-François Boulicaut

compute thresholds from which it is possible to decide wether the true or the false
value must be assigned. For instance, in Tab. 1b, an over-expression property
has been encoded and, e.g., Genes a, c, and e are over-expressed together in
Situations 2, 4 and 5.

In [16], we have proposed a method which supports the choice for a discretiza-
tion technique and an informed decision about its parameters. The idea was to
study the impact of discretization by a sound comparison between the dendro-
grams (i.e., binary trees) that are generated by the same hierarchical clustering
algorithm applied to both the raw expression data and various derived boolean
matrices. This paper is a significant extension of [16]. The framework has been
revisited and the experimental validation have been considerably extended.

In Section 2, we refine the similarity measure introduced in [16]. It is level
independent, and it depends for each node on its subtree structure. It can be
applied on gene and/or situation dendrograms and we introduce an aggregated
measure for considering both simultaneously. Section 3 is dedicated to the use of
this similarity measure on three real gene expression data sets in order to select
an adequate discretization technique. The robustness of the approach is also
emphasized by an a posteriori analysis of the extracted patterns in the various
boolean contexts. For this purpose, we adapt the similarity measure between
collections of patterns introduced in [17]. In Section 4, we study further the
robustness of our approach by comparing several clustering results in the raw
data. Section 5 is a short conclusion.

2 Boolean Encoding Assessment

2.1 Comparing Binary Trees

The problem of tree comparison has motivated a lot of research. Designing sim-
ilarity measures between trees is difficult because it has to be defined according
to the semantics of trees and similarities which are generally application domain
dependant. For instance, considering the analysis of phylogenies, distance mea-
sures between both rooted and unrooted trees have been designed to compare
different phylogenetic trees concerning the same set of individuals (e.g., different
species of animals having a common ancestor). Various distance metrics between
trees have been proposed. The nni (nearest neighbor interchange) and the mast
(maximum agreement subtree) are two of the most used metrics. nni has been
introduced independently in [18] and [19] and its NP-completeness has been
recently proved [20,21]. mast has been proposed in [22], and [23] describes an
efficient algorithm for computing this metrics on binary trees. These two ap-
proaches are tailored for the problem of comparing phylogenies where the goal is
to measure some degree of isomorphism between two dendrograms representing
the same species of biological organisms.

In our data mining problem, we have sets of objects (vectors of expression
values for genes in various biological situations), that we want to process with a
hierarchical clustering algorithm. Depending on the different discretization oper-
ations on raw expression data, a same clustering algorithm working on encoded

Boolean Property Encoding for Local Set Pattern Discovery 119

boolean gene expression data can return (very) different results. We are look-
ing for a method that supports the comparison of these various gene and/or
situation dendrograms obtained on boolean data w.r.t. the common reference
dendrogram that has been computed from the raw data. We need to measure
both the degree of similarity of their structures and the similarity between the
contents of their associated collections of clusters. We introduced in [16] a simple
measure which is also easy to compute. Intuitively, it depends on the number of
matching nodes between the two trees we have to compare.

2.2 Definition of Similarity Scores

Let O = {o1, . . . , on} denote a set of n objects. Let T denote a binary tree built
on O. Let L = {l1, . . . , ln} denote the set of n leaves of T associated to O for
which, ∀i ∈ [1 . . . n] , li ≡ oi. Let B = {b1 . . . bn−1} denote the set of the n − 1
nodes of T generated by a hierarchical clustering algorithm starting from L. By
construction, we consider bn−1 = r, where r denotes the root of T . We define
the two sets:

δ (bi) = {bj ∈ B | bj is a descendent of bi} ,

τ (bi) = {lj ∈ L | lj is a descendent of bi} .

An example of a tree for the genes from Tab. 1a is given in Fig. 1. Here,
τ (b3) = {b, d, f, g} and δ (b3) = {b1, b2}.

Fig. 1. An example of binary tree

We want to measure the similarity between a tree T and a reference tree Tref

built on the same set of objects O. For each node bi of T , we define the following
score (denoted SB and called BScore):

120 Ruggero G. Pensa and Jean-François Boulicaut

SB (bi, Tref) =
∑

bj∈δ(bi)

aj

aj =

⎧⎨⎩
1

|τ(bj)| , if

∃bk ∈ Tref | τ (bj) = τ (bk)
0, otherwise

(1)

In other terms, for a node b in T , its score depends both on the number of its
matching nodes in Tref (bk ∈ Tref is a matching node for b if τ (b) = τ (bk))
and |τ(b)|. To obtain the similarity score of T w.r.t. Tref (denoted ST and called
TScore), we consider the BScore value on the root, i.e.:

ST (T, Tref) = SB (r, Tref) (2)

As usually, it is interesting to normalize the measure to get a score between
0 (for a tree which is totally different from the reference) and 1 (for a tree which
is equal to the reference). For the TScore measure, since its maximal value
depends on the tree morphology, we can normalize by ST (Tref , Tref):

ST (T, Tref) =
ST (T, Tref)

ST (Tref , Tref)
(3)

ST (T, Tref) = 0 means that T is totally different from Tref , i.e., there are no
matching node between T and Tref . Indeed, ST (T, Tref) = 1 means that T is
totally similar to Tref , i.e., every node in T matches with a node in Tref . Given
two trees T1 and T2 and a reference Tref , if ST (T1, Tref) < ST (T2, Tref), then
T2 is said to be more similar to Tref than T1 according to TScore.

An important property (missing from [16]) is the following:

Property 1. The measure 1 is asymmetric, i.e. given a reference tree Tref , ∃T
such that ST (T, Tref) �= ST (Tref , T).

As a consequence of this property, such a measure makes sense when one wants to
compare different binary trees with the same reference. If a symmetric measure
is needed, one can consider the mean of the two possible measures for a couple
of trees:

ST (T1, T2) + ST (T2, T1)
2

.

2.3 Comparison Between Gene Dendrograms

Tab. 1a is a toy example of a gene expression matrix. Each row represents a gene
vector, and each column represents a biological sample vector. Each cell contains
an expression value for a given gene and a given sample. In this example, we have
O = {a, b, c, d, e, f, g, h}. A hierarchical clustering using the Pearson’s correlation
coefficient and the average linkage method (see, e.g., [4]) on the data from Tab. 1a
leads to the dendrogram in Fig. 1.

Assume now that we discretize the expression matrix by applying two differ-
ent methods used for over-expression encoding [9]. The first one, the so-called

Boolean Property Encoding for Local Set Pattern Discovery 121

“Mid-Ranged” method, considers the mean between the maximal and minimal
values for each gene vector. Values which are greater than the average value are
set to 1, 0 otherwise (Tab. 1b). A second method, the so-called “Max - X% Max”
method, takes into account the maximal value for each gene vector. Values that
are greater than (100−X)% of the maximal value are set to 1, 0 otherwise. We
set X to 10 deriving the matrix in Tab. 1c.

Assume now that we use the same clustering algorithm on the two derived
boolean data sets. The resulting dendrograms are shown in Fig. 2. Fig. 2a (resp.
Fig. 2b) represents the gene dendrogram obtained by clustering the boolean
matrix in Tab. 1b (resp. Tab. 1c).

a) b)

Fig. 2. Gene trees built on two differently discretized matrices

We can now use the similarity score and decide which discretization is better
for this gene expression data set, i.e., the one for which ST (T, Tref) has the
largest value. The common reference (Tref) is the tree in Fig. 1. Let Ta and Tb

denote the trees in Fig. 2a and 2b respectively. Using Equation 3, we obtain:

ST (Ta, Tref) = 0.77 ST (Tb, Tref) = 0.23.

Since ST (Ta, Tref) > ST (Tb, Tref), the first discretization method is consid-
ered better for this data set w.r.t. the performed hierarchical clustering. In fact,
in Ta, only node b1 does not match (i.e., it does not share the same set of leaves)
with any node in Tref , while in Tb, there are only two nodes (b3 and b6) that
match with some nodes in Tref .

The same process can be applied to situation dendrograms by considering
now that the objects are the situations. In practice, we perform both processes to
support the choice of a discretization technique as illustrated in the next section.

2.4 Average Similarity Score

When we compare both situation and gene trees, we have different results for
each comparison. According to our practice of gene expression data analysis, we

122 Ruggero G. Pensa and Jean-François Boulicaut

often have thousands genes and a few tens or hundreds of situations. It means
that, the similarity scores computed for situations tree are usually greater than
those computed for gene dendrograms. This can be explained by the fact that sit-
uation dendrograms have more probabilities to be identical, since they contains
less leaves, and the correlation coefficients (during the hierarchical clustering
process) are computed on vectors of thousands components (the genes whose
expression is measured in each situation). As a result, if we compare differently
discretized gene expression matrix, the discretization thresholds for which we get
the highest similarity score can be different for gene and situation dendrograms.

If we are interested in a unique similarity score, different solutions can be
adopted. For example, we can consider the average between the gene and the
situation similarity scores. A problem is that if one of the trees is totally dis-
similar from the reference (relative score is equal to zero), the average value will
not be zero. We can solve this problem by simply considering the square root of
the product between the two similarity scores:

SAT (T, Tref) =
√

SGT (T, Tref) · SST (T, Tref) (4)

where SGT and SST and denote respectively the normalized similarity score for
genes and situation, and SAT denotes the average similarity score.

Following this definition, SAT is always between the gene and the situation
similarity score values. Furthermore, when at least one of the two similarity
scores is equal to zero, also the average similarity score is zero.

3 Using Similarity Scores

Many discretization techniques can be used to encode gene expression properties
from expression values that are either integer values (case for SAGE data [2])
or real values (case for microarray data [1]). In this paper, we consider for our
experimental study only three techniques that have been used for encoding the
over-expression of genes in [9]:

– “Mid-Ranged”. The highest and lowest expression values are identified for
each gene and the mid-range value is defined. For a given gene, all expression
values that are strictly above the mid-range value give rise to value 1, 0
otherwise.

– “Max - X% Max”. The cut off is fixed w.r.t. the maximal expression value
observed for each gene. From this value, we remove a percentage X of this
value. All expression values that are greater than the (100−X)% of the Max
value give rise to value 1, 0 otherwise.

– “X% Max”. For each gene, we consider the situations in which its level of
expression is in X% of the highest values. These genes are assigned to value
1, 0 otherwise.

We want to evaluate the relevancy of a discretization algorithm and its pa-
rameters according to the preserved properties w.r.t. a hierarchical clustering of

Boolean Property Encoding for Local Set Pattern Discovery 123

the raw data. So, we have to compare the dendrograms obtained from the three
different boolean matrices with the reference dendrogram.

We have considered three gene expression data sets: two microarray data sets
and a SAGE data set. The first data set (CAMDA [24]) concerns the transcrip-
tome of the intraerythrocytic developmental cycle of the plasmodium falciparum,
a parasite that is responsible for a very frequent form of malaria. We have the
expression values for 3 719 genes in 46 different time points, i.e., biological sit-
uations. The second data set (Drosophila [25]) concerns the gene expression of
drosophila melanogaster during its life cycle. We have the expression values for
3 030 genes and 81 biological situations. The third one (human SAGE data from
NCBI, see also [26,13]) contains the expression values for 5 327 human genes in
90 different cancerous and not cancerous cellular samples belonging to different
human organs.

One indicator of the differences between derived boolean contexts is their
density, i.e., the number of true values divided by the total number of cells in
the matrices. In Fig. 3, we provide the density curves for the three data sets and
depending on different thresholds for the “Max - X% Max” method. Notice that
densities for the “X% Max” method are equal to X.

Fig. 3. Density values for different “Max - X% Max” thresholds

We processed all the computed boolean matrices with a hierarchical clus-
tering algorithm based on the centered Pearson’s correlation coefficient and the
average linkage method. The same algorithm with the same options has been ap-
plied to the three original matrices. Finally, for each data set, we have compared
all the genes and situations trees derived from the boolean matrices with the ref-
erence trees. The results in terms of TScore (Equation 1) for the “Mid-Ranged”
method, are summarized in Fig. 4.

124 Ruggero G. Pensa and Jean-François Boulicaut

Fig. 4. Similarity scores for clustering trees on Mid-Ranged discretized matrices

For the “Max - X% Max” and “X% Max” methods, we summarize the results
depending on the variation of the threshold X for the gene dendrograms in Fig. 5a
and Fig. 6c, for the situation dendrograms in Fig. 5b and Fig. 6d. It is important
to observe that, for each data set, we obtained the highest values of similarity
scores for both the genes and the situations for almost the same discretization
thresholds.

We have used the definition of average similarity score (Equation 4), to iden-
tify a unique measure of similarity for each boolean context. Results are sum-
marized in Fig. 7.

We have also applied the same clustering algorithm on various randomly
generated boolean matrices based on the same sets of objects. Then, we have
compared the resulting dendrograms with the reference. In the first two data
sets (CAMDA and Drosophila), the similarity scores of the randomly generated
boolean matrices are always very low or equal to 0. In the SAGE data set, given
a density value, the gene scores resulting from randomly generated matrices
are always lower than the ones obtained by any discretization method (while
the situation scores are always negligible). One explanation could be that the
discretized matrices are here very sparse compared to the ones we derive from
the first two data sets (see Fig. 3). Using a low threshold to discretize such a
matrix does not make sense: obtained scores are similar to the scores which are
computed on random boolean matrices. Moreover, using a high threshold value
X for the “X% Max” discretization method leads to similarity scores that are
close to those obtained for randomly generated matrices, though still higher. We
can observe the behavior of this particular SAGE data set in Fig. 8.

As we can see, each discretization method has a set of threshold values for
which it produce relatively high results in terms of similarity scores. Obviously,
depending on the analysis task, one method can be more adapted than the

Boolean Property Encoding for Local Set Pattern Discovery 125

a)

b)

Fig. 5. Similarity scores w.r.t. different thresholds for “Max - X%Max”

other ones. For instance, even if both the “Max - X% Max” and the “X% Max”
methods encode over-expression, the first one produces a boolean context whose
density is strictly dependent on the maximal expression value for each gene.
Instead, with the second method, we are sure that the density of the resulting
boolean context is near to the X threshold. Does it mean that we are able to
extract different kinds of patterns?

Clearly, the collections of patterns we can extract when using two differ-
ent discretization techniques for over-expression encoding, will be different. We
consider however that if we extract in proximity of the thresholds which pro-
duced the highest similarity scores for both methods, the intersection between
the extracted collections will have a significant size. Patterns belonging to this
intersection will also inform about rather strong associations.

126 Ruggero G. Pensa and Jean-François Boulicaut

c)

d)

Fig. 6. Similarity scores w.r.t. different thresholds for “X%Max”

We have analyzed such intersections between different collections of formal
concepts ([11]) which have been extracted from the boolean SAGE data set.

Definition 1. (G, T) ∈ P × S is a formal concept in r ⊆ P × S when T =
ψ(G, r) and G = φ(T, r). ψ and φ are the classical Galois operators, i.e., we
have φ(T, r) = {g ∈ P | ∀o ∈ S, (g, o) ∈ r} and ψ(G, r) = {o ∈ S | ∀g ∈
G, (g, o) ∈ r}. (φ, ψ) is the so-called Galois connection between S and P. Notice
that, by construction, when (G, T) is a formal concept, G and T are closed sets.

We used the D-Miner algorithm [14] to extract formal concepts under con-
straints: to avoid problems with outliers, we have considered formal concepts
with at least 2 biological situations and at least 10 genes (i.e., |G| ≥ 10 and

Boolean Property Encoding for Local Set Pattern Discovery 127

a)

b)

Fig. 7. Average similarity scores w.r.t. different thresholds for “Max - X%Max”
(a) and “X%Max” (b)

|T | ≥ 2). The mined boolean contexts have been obtained by the “Max - X%
Max” and the “X% Max” over-expression encoding methods. We used the X
threshold values which have produced the highest similarity scores (see Fig. 7).
Then we compared all the collections extracted from each boolean context ob-
tained with the first method, with all the collections related to the second
method.

To compare pattern collections, we adapted the interactive self-similarity
metrics introduced in [17]. Such a measure has been studied for comparing two
collections of frequent itemsets extracted from two samples of a same data set.
We modified it to work on formal concepts extracted from different boolean
instances of a same data set.

128 Ruggero G. Pensa and Jean-François Boulicaut

Fig. 8. Similarity scores w.r.t. density for “Max - X%Max”, “X%Max” and
random discretization methods on SAGE data

Given two boolean contexts r1 and r2 our pattern collection similarity mea-
sure is defined as follows:

Sim (C1, C2) =

∑
x∈{T1}∩{T2}

|φ(x,r1)∩φ(x,r2)|
|φ(x,r1)∪φ(x,r2)|

|{T1} ∪ {T2}|
(5)

where C1 = {(G1, T1) | (G1, T1) is a concept} and C2 = {(G2, T2) | (G2, T2) is a
concept} are the collection of concepts extracted respectively from r1 and r2.

To better understand the meaning of this measure, we can see a toy example
based on the tables Tab. 1b and Tab. 1b. Let Cb and Cc denote the collection
of formal concepts extracted respectively from the boolean matrices in Tab. 1b
and Tab. 1c (with a non empty set of genes and a non empty set of situations).
The list of concepts contained in the two collections is:

Cb Cc

(Gb1, Tb1) = {a, c, e}, {2, 4, 5} (Gc1, Tc1) = {c}, {4, 5}
(Gb2, Tb2) = {b, f, g}, {1, 3, 5} (Gc2, Tc2) = {b}, {1, 3}
(Gb3, Tb3) = {b, d, f, g}, {1, 3} (Gc3, Tc3) = {b, d, f, g}, {1}
(Gb4, Tb4) = {a, c, e, h}, {4, 5} (Gc4, Tc4) = {a, c, e, h}, {4}
(Gb5, Tb5) = {a, b, c, e, f, g, h}, {5}

Clearly, only two sets of situations are shared by the two collections. They are
Tb3 = Tc2 = {1, 3} and Tb4 = Tc1 = {4, 5}. We get the following result:

Sim (Cb, Cc) =
|Gb3∩Gc2|
|Gb3∪Gc2| + |Gb4∩Gc1|

|Gb4∪Gc1|
7

=
1
4 + 1

4

7
= 0.07

Applying such a measure to our different collections gives the results collected
in Tab. 2.

Boolean Property Encoding for Local Set Pattern Discovery 129

Max -X%Max

X %Max 40 45 50 55 60 65

2 0.009456 0.004353 0.001392 0.000412 0.000095 0.000016
5 0.147644 0.082908 0.028939 0.008899 0.002057 0.000334
8 0.093602 0.149451 0.146705 0.062045 0.017565 0.003033
10 0.033129 0.0663 0.131817 0.10268 0.039822 0.007915
15 0.003442 0.008034 0.026383 0.06342 0.097521 0.03868
20 0.000337 0.000792 0.0028 0.009689 0.035462 0.082248

Table 2. Self-similarity measures on different collections of concepts in SAGE
data

Interestingly, the self-similarity values are relatively high in the intersection
between the X values for which the ”X% Max” method takes the highest simi-
larity scores (TScore), and the X values for which the “Max -X% Max” method
has the same behavior (see Fig. 7). We notice how the measures are usually very
low (the highest one is about 0.15). It emphasizes the impact of the choice of
a relevant discretization method. The relevancy of the extracted patterns is not
only related to the preservation of some properties of the raw data set, but also
tightly related to the specific biological problem at hand.

Comparing dendrograms resulting from the clustering of different types of
derived boolean matrices enables to choose the “best” discretization method
and parameters for a given data set. When looking at the average similarity
scores for “Max - X% Max” and “X% Max” methods (see Fig. 7), we observe
either an optimal value or an asymptotic behavior. It could mean that the best
choice for the discretization threshold is a trade-off between the value for which
we get the best similarity score and the value for which the data mining tasks
remain tractable.

4 Robustness of the Measure

In Section 2, we proposed a method to assess gene expression property encoding.
We refined the measure presented in [16] by defining an average similarity score
which can take into account both gene and situation similarity scores. We now
discuss the choice of the reference tree, and thus the choice of the clustering
algorithm. Our idea is simple. If we apply a clustering algorithm with differ-
ent parameters to the same gene expression matrix, and then compare all the
resulting dendrograms using our method, the measures should be quite similar.

Even if there are methods that produce very similar results, and others that
produce totally different results, the overall behavior of the measures should be
identical, i.e., for each particular configuration of the clustering algorithm, the
mean of the similarity scores obtained by comparing its resulting dendrogram
with the dendrograms related to all the other configuration, should be high and
should not differ too much from the means computed in the same way for the
other configurations.

130 Ruggero G. Pensa and Jean-François Boulicaut

To perform the experiments, we have used the three datasets described
in Section 2.3. Hierarchical clustering has been performed with the free soft-
ware HCE 2.0 (Hierarchical Clustering Explorer) available on-line on the site of
the Human-Computer Interaction Laboratory (University of Maryland)1. The
used clustering metrics have been the classical Euclidean distance and the cen-
tered/uncentered Pearson’s coefficients ([4]). Moreover, we used the four classi-
cal linkage methods (i.e., single, complete, average, average group linkage) and
Shneiderman’s 1-by-1 linkage method as well. For each data set, once the cluster-
ing process was completed, we have compared each of the resulting dendrograms
with all the other dendrograms. This has been done for both gene and situation
dendrograms. Due to space limitations, we provide only the average similarity
scores for the Pearson’s uncentered coefficient in the SAGE data set (see Tab. 3).

Average Similarity Scores - Pearson’s Uncentered

Metrics Linkage Average Avg.Group Complete Single Shneid.

Pearson’s Average 1 0.67314383 0.67284944 0.80330149 0.73423766
Uncentered Average Group 0.52915848 1 0.46868204 0.74420618 0.57334442

Complete 0.72280557 0.64047742 1 0.76910562 0.65782797
Single 0.37379950 0.44053048 0.33315260 1 0.38401040
Shneiderman 0.69095298 0.68635693 0.57626332 0.77659575 1

Pearson’s Average 0.73765387 0.63184005 0.57791403 0.76935144 0.63659514
Centered Average Group 0.51583859 0.71440599 0.71471718 0.73727445 0.58849284

Complete 0.63213575 0.60668335 0.71471718 0.73727445 0.58849284
Single 0.34417977 0.40501553 0.30670888 0.84271541 0.35339934
Shneiderman 0.60198327 0.64004493 0.51441451 0.75143098 0.7112918

Euclidean Average 0.22302538 0.26032110 0.21204947 0.34910165 0.22825697
Average Group 0.22822833 0.26402535 0.20887047 0.34531201 0.23794469
Complete 0.30246296 0.33102761 0.29277610 0.39226471 0.29859425
Single 0.15444260 0.18272967 0.14310903 0.28929635 0.15970716
Shneiderman 0.02970444 0.03884745 0.02795342 0.07367044 0.03641223

Table 3. Average similarity scores for clustering using Pearson’s uncentered
coefficient

Obviously, obtained values can be quite different. As expected, comparisons
between “Pearson’s coefficient” and “Euclidean distance” lead to rather low
similarity scores. It is interesting to notice that comparisons with the single
linkage method as reference leads to very high similarity scores. The same linkage
method, compared with other references, give rise to rather low similarity scores.
Our measure is indeed asymmetric.

We can compute the mean of the similarity scores obtained for each reference
(see Fig. 9). The scores are always higher than the computed scores we got when
comparing the dendrograms from the boolean matrices (see Section 2.3).

1 http://www.cs.umd.edu/hcil/hce/

Boolean Property Encoding for Local Set Pattern Discovery 131

Fig. 9. Computed means of the average similarity scores for the three datasets

Finally, we have also considered the robustness of our metrics by looking
at the overall behavior. For each data set, we have computed the mean of the
measures shown in Fig. 9. To explain the content of this figure, let us remind all
the steps of our analysis. First we have computed the similarity scores between
all couples of computed dendrograms. Let Ti denotes the dendrogram resulting
of a particular combination of clustering parameters (i = 1..15). Let Sij denotes
the similarity score computed between each couple of dendrograms Ti and Tj

(Ti being the reference). Notice that in general Sij �= Sji. In Fig. 9 we have the
following values:

Si =

∑15
j=1 Sij

15
.

Let S
p

i denote the mean computed only on the dendrograms obtained by using
the two Pearson’s coefficient, i.e.,

S
p

i =

∑10
j=1 Sij

10
.

For each data set, we are interested in the following measures:

S =
∑15

i=1 Si

15
and S

p
=
∑10

i=1 S
p

i

10
.

Finally, we need to compute the standard deviations of the Si and S
p

i values:

σ =

√∑15
i=1

(
Si − S

)2
15

and σp =

√√√√∑10
i=1

(
S

p

i − S
p
)2

10

132 Ruggero G. Pensa and Jean-François Boulicaut

Fig. 10. Values of S and S
p

and related standard deviations σ and σp

The final results are summarized in Fig. 10. Notice that the values of the means
(S and S

p
) are near to 0.5 for every dataset, while the standard deviation is

generally small. Both these observation make us conclude that the dendrogram
resulting from the hierarchical clustering algorithm is a valid reference for our
problem of comparing different method of gene expression property encoding.
Moreover, the choice of the Pearson’s correlation coefficient for the execution of
the comparison (see Section 2.3), is shown to be adequate by the fact that the
means computed only on the dendrograms obtained through this metrics (S

p
)

are greater than the general means (S), while the related standard deviations
(σp) are similar or smaller than the general ones (σ).

5 Conclusion

We defined a new pre-processing technique that supports the evaluation and
assessment of different discretization techniques for a given gene expression data
set. The evaluation is based on the comparison of dendrograms obtained by clus-
tering various derived boolean matrices with the one obtained on the raw matrix.
The defined metrics is simple and we have validated its relevancy on different real
data sets. A validation on a biological problem has been considered in [16]. This
is a step towards a better understanding of a crucial pre-processing step when
we want to apply the very efficient techniques based on set pattern mining from
boolean data. Thanks to the exhaustive search for every pattern which satisfy
the user-defined constraints, set pattern mining techniques like constraint-based
mining of formal concepts appear to be complementary approaches to global
pattern heuristic mining techniques like clustering.

Boolean Property Encoding for Local Set Pattern Discovery 133

Acknowledgements. The authors want to thank Céline Robardet, Sylvain Bla-
chon and Olivier Gandrillon for the pre-processing of the SAGE data set, and
Sophie Rome for her participation to microarray data preparation. Furthermore,
we thank Claire Leschi and Jérémy Besson for their contribution to a prelim-
inary version of this paper. Finally, this research is partially funded by ACI
MD 46 (CNRS STIC 2004-2007) Bingo (Bases de Données Inductives pour la
Génomique).

References

1. DeRisi, J., Iyer, V., Brown, P.: Exploring the metabolic and genetic control of gene
expression on a genomic scale. Science 278 (1997) 680–686

2. Velculescu, V., Zhang, L., Vogelstein, B., Kinzler, K.: Serial analysis of gene ex-
pression. Science 270 (1995) 484–487

3. Piatetsky-Shapiro, G., Tamayo, P., eds.: Special issue on microrray data mining.
SIGKDD Explorations, Volume 5, Issue 2 (2003)

4. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (1998) 14863–
14868

5. Niehrs, C., Pollet, N.: Synexpression groups in eukaryotes. Nature 402 (1999)
483–487

6. Boulicaut, J.F., Bykowski, A.: Frequent closures as a concise representation for
binary data mining. In: Proceedings PAKDD’00. Volume 1805 of LNAI., Kyoto,
JP, Springer-Verlag (2000) 62–73

7. Pei, J., Han, J., Mao, R.: CLOSET an efficient algorithm for mining frequent
closed itemsets. In: Proceedings ACM SIGMOD Workshop DMKD’00, Dallas,
USA (2000) 21–30

8. Zaki, M.J., Hsiao, C.J.: CHARM: An efficient algorithm for closed itemset mining.
In: Proccedings SIAM DM’02, Arlington, USA (2002)

9. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong-
association-rule mining for large-scale gene-expression data analysis: a case study
on human sage data. Genome Biology 12 (2002)

10. Creighton, C., Hanash, S.: Mining gene expression databases for association rules.
Bioinformatics 19 (2003) 79 – 86

11. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In Rival, I., ed.: Ordered sets. Reidel (1982) 445–470

12. Rioult, F., Boulicaut, J.F., Crémilleux, B., Besson, J.: Using transposition for
pattern discovery from microarray data. In: Proceedings ACM SIGMOD Workshop
DMKD’03, San Diego (USA) (2003) 73–79

13. Rioult, F., Robardet, C., Blachon, S., Crémilleux, B., Gandrillon, O., Boulicaut,
J.F.: Mining concepts from large sage gene expression matrices. In: Proceedings
KDID’03 co-located with ECML-PKDD 2003, Catvat-Dubrovnik (Croatia) (2003)
107–118

14. Besson, J., Robardet, C., Boulicaut, J.F.: Constraint-based mining of formal con-
cepts in transactional data. In: Proceedings PAKDD’04. Volume 3056 of LNAI.,
Sydney (Australia), Springer-Verlag (2004) 615–624

15. Besson, J., Robardet, C., Boulicaut, J.F., Rome, S.: Constraint-based concept
mining and its application to microarray data analysis. Intelligent Data Analysis
journal 9 (2004) To appear.

134 Ruggero G. Pensa and Jean-François Boulicaut

16. Pensa, R.G., Leschi, C., Besson, J., Boulicaut, J.F.: Assessment of discretization
techniques for relevant pattern discovery from gene expression data. In: Proceed-
ings ACM BIOKDD’04 co-located with SIGKDD’04, Seattle, USA (2004) 24–30

17. Parthasarathy, S.: Efficient progressive sampling for association rules. In: Proceed-
ings IEEE ICDM’02, Maebashi City, Japan (2002) 354–361

18. Moore, G.W., Goodman, M., Barnabas, J.: An iterative approach from the stand-
point of the additive hypothesis to the dendrogram problem posed by molecular
data sets. Journal of Theoretical Biology 38 (1973) 423–457

19. Robinsons, D.F.: Comparison of labeled trees with valency three. Journal of
Combinatorial Theory, Series B 11 (1971) 105–119

20. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances
between phylogenetic trees. In: Proceedings ACM-SIAM SODA’97. Volume 55.
(1997) 427–436

21. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On computing the
nearest neighbor interchange distance. In: Discrete mathematical problems with
medical applications (New Brunswick, NJ, 1999), Providence, RI, Amer. Math.
Soc. (2000) 125–143

22. Finden, C., Gordon, A.: Obtaining common pruned trees. Journal of Classification
2 (1985) 255–276

23. Cole, R., Hariharan, R.: An o(n log n) algorithm for the maximum agreement
subtree problem for binary trees. In: Proceedings of the 7th annual ACM-SIAM
symposium on Discrete algorithms, Atlanta, Georgia, United States (1996) 323–332

24. Bozdech, Z., Llinás, M., Pulliam, B.L., Wong, E., Zhu, J., DeRisi, J.: The tran-
scriptome of the intraerythrocytic developmental cycle of plasmodium falciparum.
PLoS Biology 1 (2003) 1–16

25. Arbeitman, M., Furlong, E., Imam, F., Johnson, E., Null, B., Baker, B., Krasnow,
M., Scott, M., Davis, R., White, K.: Gene expression during the life cycle of
drosophila melanogaster. Science 297 (2002) 2270–2275

26. Lash, A., Tolstoshev, C., Wagner, L., Schuler, G., Strausberg, R., Riggins, G.,
Altschul, S.: SAGEmap: A public gene expression resource. Genome Research 10
(2000) 1051–1060

Local Pattern Discovery in Array-CGH Data

Céline Rouveirol1,2 and Francois Radvanyi2

1 LRI , UMR 8623, Université Paris Sud, bât 490, 91405 Orsay cedex FRANCE
2 Institut Curie, UMR 144, 26 rue d’Ulm 75248 Paris cedex 05 FRANCE

1 Local Patterns in Array-CGH Data

We report3 in this paper about our practice of frequent pattern discovery algo-
rithms in the context of mining biological data related to genomic alterations
in cancer. A number of frequent item set methods have already been success-
fully applied to various biological data obtained from large scale analyses (see
for instance [4] for SAGE data, [20,22,26] for gene expression data), and all of
these have to face the peculiarity of such data wrt standard basket analysis data,
namely that the number of observations is low wrt the number of attributes.

We handle in this paper a different type of biological data, complementary
to gene expression data – and for the moment less studied – array-CGH4 data
[30]. Array-CGH allows measuring chromosomic alterations, i.e., gains and losses
of segments of chromosomes in the genome of tumoral cells, compared with
a normal control. It is hypothesised that a relatively low number of genomic
alterations control the cancer process [15] and we expect that large scale mining
of CGH array data will extract highly valuable information concerning genetic
alterations, to be cross-checked with anatomo-clinical and gene expression data.

The measured phenomenon in CGH array is the number of copies of seg-
ments of chromosomes, that we will name BACs in the following, in a particular
genome. In a ”normal” situation, each segment occurs twice in the cell genome. In
tumoral cells, a chromosome segment can be amplified, (i.e., it may be detected n
times in the genome of the cell, with n > 2). Such sequences potentially contain
oncogenes, i.e., genes responsible for tumour start and progression. Other zones
are sometimes lost, in this case the genome of the tumoral cell may contain zero
or one copy of that chromosome fragments. Such zones may contain candidate
tumour suppressor genes, i.e., genes which inhibit tumour progression.

Moreover, and this will be our focus here, we expect to find combinations of
such zones correlated with anatomo-clinical or biological attributes associated
to the tumours (stage of tumour, probability of recurrence and progression, ob-
served mutation of some genes, etc.). The identification of combination of regions
of recurrent genomic alterations will have several implications in tumour biology.
The definition of anatomopathological parameters like stage and grade of the tu-
mours, is not accurate and is often ”pathologist dependent”. Also, the frontiers

3 This work has been performed when the first author was on leave to CNRS in Institut
Curie.

4 CGH : Comparative Genomic Hybridization.

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 135–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

136 Céline Rouveirol and Francois Radvanyi

between two consecutive stages or grades are difficult to define. The definition
of combination of altered regions associated with these anatomopathological pa-
rameters will give a molecular definition of these parameters which will be much
less subject to controversy. The same is also valid for clinical parameters such as
prediction of clinical outcome or response to therapy. The association of altered
regions with anatomoclinical parameters or biological parameters (mutation of
a gene or altered expression of a gene or a set of genes for example) is an im-
portant step towards the identification of genomic events necessary for tumour
formation and progression. It will be of great help to identify signalling pathways
activated in these processes. It is likely that the identified pathways will not be
only involved in oncogenesis but also in other diseases, as well as in normal tis-
sues. The combination of events that we will identified could be acquired in a
stepwise fashion as originally thought. A much more recent theory suggests that
combination of events are acquired simultaneously due to telomere dysfunction
[12]. Our work will help to choose between these different mechanisms of tumour
progression.

Looking for sets of gained or lost BACs correlated to a class attribute is
a highly complex problem: even if array-CGH data is an order smaller than
expression micro-array data, the number of BAC attributes is still very large
when compared to the number of observations. We therefore do not address this
problem directly, and proceed in two steps. We first look for local constrained
patterns, i.e., patterns that both satisfy a set of relevant properties wrt genome
biology and some nice computational properties. For instance, one such con-
straint states that only sequences (instead of itemsets) of BACs are relevant for
the problem at hand. Another constraint sets that we are only interested in closed
sequences, i.e., the largest sequences that occur in a given set of observations.
These patterns are local because they are expected to characterise a relatively
small number of observations. As no global model for such a complex problem
as cancer initiation and progression is available, our way to proceed is rather
to assemble jigsaw pieces these local patterns allows us to extract. These local
patterns are then used as a filter to re-describe the initial data before learning
discriminant patterns, similarly as what Kramer and De Raedt proposed in [18].

Such re-description or abstraction of the mining task in terms of the ex-
tracted constrained patterns allow us to enforce the language bias, which is far
too weak in the initial learning problem to get any result in reasonable time.
The hypothesis space after abstraction is much smaller, it is therefore possible
to exhaustively explore it, with the goal of finding discriminant patterns wrt
given class attributes. In other words, we see local patterns as a way to strongly
bias the set of expected solutions (a point de vue on the data), so that exhaustive
exploration of this viewpoint and its limits wrt the discrimination problem at
hand is possible. We do not expect to build a classifier based on array-CGH data
only with a high recall, as it is highly unprobable that genomic alterations are
sufficient to fully explain, for instance, the stage of a tumour, as many other ge-
netic events other than loss, gain or amplification [1] as well as epigenetic events
take place during cancer initiation and progression. However, we are interested

Local Pattern Discovery in Array-CGH Data 137

in isolating some subgroups of patients (even small ones), for which exists a
pattern of gained and lost regions is significantly correlated to attributes such
as the stage of tumour or specific gene mutations.

The remainder of the paper is organised as follows. Section 2 introduces the
learning problem and motivates the reformulation in terms of local patterns,
namely GL regions. Then, section 3 describes more formally the reformulation
step and framework. Section 4 focus on the mining step from reformulated data.
Finally, section 5 provides some experimental results and section 6 concludes
and draws some perspectives for this line of research.

2 The Mining Tasks

2.1 The Initial Data and Mining Problem

Raw CGH-array data are numerical matrixes, giving for each BAC of a given
array, an intensity ratio, which, provided that there are no measurement errors
and that all cells for the test sample are all tumoral, should be equal to n

2 , where
n is the number of copies of the BAC chromosome segment in the tumoral DNA
(see figure 1). In a normal situation, the cells all contain 2 copies of the BAC,
a log2 ratio of 0 is observed for this BAC. A -0.5 log2 ratio means that a single
copy of the BAC has been detected in the genome cells of the sample, a 0.5 log2
ratio means that a single copy of this BAC has been gained (the cell therefore
contains 3 copies of it). High positive or negative deviations denote the gain or
loss of more than one copy of a given BAC.

In this work, the array-CGH data has been normalised and discretised, using
the algorithm GLAD (see [16] for a full description of the method). Let us just
mention here that GLAD extracts a stepwise function from each CGH profile,
and that this step function is then matched to a set of discrete values (see figure
1)5. It is more natural to discretise CGH data than gene expression data, as the
underlying phenomenon in CGH data (i.e., the copy number of a set of BACs
in tumoral cells) is discrete. Moreover, the discretisation steps makes it possible
to apply a whole range of well studied discrete algorithms, which are potentially
interesting alternatives to numerical techniques, such as statistical clustering or
Support Vector Machines [2]. We will assume in the remainder of the paper that
each BAC is coded as Gained, Normal or Lost. Our input data can be formally
described as follows.

Definition 1. Given a set of BACs B, and a set of observations O, an ex-
traction context is a boolean matrix M of 2 ∗ |B| = NB boolean attributes (two
boolean attributes are necessary to encode the status of each BAC, gained, lost
or normal) and |O| = NO observations representing gained (resp. lost) BACs
for each observation of O. O can be partitioned into two groups O+ and O−,
yielding M to split into M+ and M−, named in the following the positive and
negative contexts.

5 Courtesy of Ph. Hupé et al.

138 Céline Rouveirol and Francois Radvanyi

0 500 1000 1500 2000 2500

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

Position

Lo
g

2
ra

tio

Lost
Normal
Gained
Outlier

AWS smoothing

Fig. 1. Example of a whole genome CGH profile of a tumoral DNA. The X axis
denotes the position of BACs on the genome, the Y axis denotes the log2-ratio
of the estimated copy number for BACs.

From this input, we wish to build discriminant patterns that are, in a first
approximation, sets of BACs which are both frequent in M+ and infrequent in
M−. These discriminant patterns are genomic alteration signatures, character-
istic for the M+ context. More formally, the problem of finding discriminant
sequence patterns for two contexts M+ and M− can be formulated as follows.

Definition 2. Given a BAC attribute set B = {bg1, . . . , bgNB , bl1, . . . , blNB} and
two boolean contexts M+ and M− built on B, we wish to find all sets of BAC
attributes dpi such that freq(dpi, M+) ≥ min t and freq(dpi, M−) ≤ max t.

For solving the above task, we have to cope with the problem, traditional when
handling micro-array data, of handling contexts with a number of attributes
much larger than the number of observations (most datasets available describes
about a hundred observations in terms of about thousands of BACs). Several ap-
proaches have been implemented in bioinformatics to overcome this dimensional-
ity problem. Let us, among others, mention the Biorelief system [21] that selects
most discriminant genes wrt to a given class. Another approach, introduced in
[26], and developed in [5] makes use of the Galois lattice connection properties
in order to efficiently search the power-set of observations, much smaller in the
case of microarray data than the power-set of attributes which is traditionally
searched by frequent itemset techniques. We follow here another strategy, that
we describe in the next sections, for coping the dimensionality problem.

2.2 Local Patterns for Learning Task Abstraction

The strategy we adopt is similar of what has been performed in [18,13] in other
biological application contexts: first identify constrained local patterns and then

Local Pattern Discovery in Array-CGH Data 139

use them to reformulate the initial learning problem into an efficiently solvable
problem. This local pattern reformulation step is indeed very problem dependent
as its goal is to select or construct salient features for the redescribing the learning
problem. We introduce in the following the definition of constrained pattern.

Most often in the Data Mining community, local patterns in an extraction con-
text are subsets of attributes that occur frequently in this context. One specificity
of this application is that B is totally ordered with ≺B, the ordering of BACs
on the genome (see fig. 1). Our local patterns in the following are sequences of
BACs, and more specifically, BACs sequences that all have the same status of
alteration (gained or lost) in a sufficient number of observations in our extraction
context.

Definition 3. A sequence of BACs is an interval of BACs given ≺B. In the
following, we denote by S(B) the set of all sequences of B. The support of a
sequence s of S(B) in a context M , denoted supp(s, M), is the set of observations
of M that contain s (i.e., such that all attributes of s are equal to 1 in those
observations). The frequency of s in M , denoted freq(s, M), is the size of its
support.

S(B) is partially ordered by ⊆, namely interval inclusion. (S(B),⊆) is a lattice,
much smaller than the lattice of itemsets of B, isomorphic to the powerset6 of
B. Sequences of BACs recurrently altered, i.e. sequences of altered BACs that
occur more than a minimal threshold in a sample of array CGH profiles, can
be numerous especially if the minimum threshold is low and not all of them are
necessarily relevant. It may be useful in that case to introduce a more complex
notion of constrained local pattern that we detail in section 3.1.

Once such constrained local patterns S = {s1, . . . , sNS} have been identified,
we can now combine them in order to build discriminant complex patterns, i.e.,
sets of constrained local patterns which are both frequent in a dataset M+ and
infrequent in a dataset M−. These discriminant sequence patterns are genomic
alteration signatures, characteristic for the M+ context.

2.3 Reformulation of Input Data

Given a set of constrained local patterns S = {s1, . . . , sNS} that satisfy a con-
junction of properties, we reformulate the initial contexts M+ and M− into
much compact and simpler contexts M+r and M−r as follows. Both reformu-
lated contexts M+r and M−r have as attributes constrained local patterns of S.
For each observation o of M (M+ or M−), and for each constrained local pattern
si = [lbi..ubi] of S, if all7 BAC attributes bj of the constrained sequence of BACs
(lbi �B bj �B ubi) occur in o, then Mr(si, o) = 1.

The obtained extraction context Mr can be seen as an abstraction of the
initial one M [28]. Mr is much simpler than M : firstly, it has substantially

6 |S(B| = NB∗(NB−1)
2

to be compared with 2NB .
7 One might consider here a more subtle reformulation, i.e. Mr(si, o) = 1 if a fixed

percentage of the BAC attributes of si occurs in o.

140 Céline Rouveirol and Francois Radvanyi

less attributes (see section 5 for more details) than M ; secondly, the set of
reformulated observations may also be reduced if some observations of M do
not contain any of the GL regions of R. More formally, the problem of finding
discriminant sequence patterns for two datasets M+ and M− can be formulated
as follows.

Definition 4. Given constrained GL region set S = {s1, . . . , sNS} and two
boolean contexts M+r and M−r described in terms of S attributes, we wish to find
all sets dpi of S such that freq(dpi, M+) ≥ min t and freq(dpi, M−) ≤ max t.

The reformulation step has numerous (and yet to be formally evaluated)
consequences on the extraction of discriminant complex patterns. Obviously,
searching for discriminant patterns in this new search space of sets of constrained
sequences of BACs is much more efficient. We will see in section 5 that the
number of constrained sequences attributes is now in the same order as the
number of observations. There is of course a loss of information during this
process: further complex pattern extraction steps can only build combinations
of constrained gain and loss regions wrt a class attribute. We describe in the
next section an instance of reformulation scheme.

3 Local Constrained Patterns

We first specify our definition of constrained local patterns implemented in this
application and give an example of one such reformulation step.

3.1 Recurrent Loss and Gain Regions

Our local patterns, named Gain/Loss regions or GL regions for short in the
following, are sequences of BACs that are recurrently gained or lost in our ex-
traction context.

Definition 5. Given a context M , describing a set of observations O in terms
of a set of totally ordered attributes S(B), a GL region r ∈ S(B) is a set of
contiguous BACs (i.e. a sequence of BACs), which are all gained or lost in at
least one observation of M . Importantly, a region r is a closed sequence of S(B),
i.e., there is no super-sequence of r which has the same support as r.

Efficient generation of closed itemsets has been studied a lot (see, among
others [23,24]) because they are a concise representations for itemsets. This lat-
ter is true as well for sequences, although generation of closed sequences has
been les studied in the Data Mining community. As this is the case for frequent
patterns in dense contexts [3], there can still be a high number of frequent closed
sequences, specially if the min frequency threshold is relatively low (around 5
or 10%). Moreover, we cannot only rely on minimal support pruning to ensure
the relevance of the obtained regions. We therefore use a rich set of additional
constraints on sequences of BACs in order to be able to construct potentially
relevant low frequency regions. We have selected the following constraints:

Local Pattern Discovery in Array-CGH Data 141

– min or max bound on the percentage of observations in the support having
a given property (such as being an outlier, being unmeasured, belonging to
a given class, etc.)

– the region is n-right (left) bounded, i.e., if the region is right (left) delimited
in n observations at least.

Let us mention here that closeness, in combination with other constraints should
be handled with care [8], if all closed constrained sequences of S(B) should be
enumerated. Finally, if constrained regions are still too numerous, we might
be only interested into minimal constrained regions. A constrained region r is
minimal if there is no other constrained region r′ such that r′ ⊂ r.

Example 1. Let us assume that we have the following context M :

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

o1 1 0 0 0 1 1 0 1 1 1 1
o2 1 1 0 0 1 1 0 0 0 1 0
o3 1 0 1 0 1 1 1 1 1 1 0
o4 0 0 0 0 0 0 0 1 1 1 0
o5 1 1 0 1 1 1 0 1 1 1 0
o6 0 0 1 0 1 1 1 0 1 0 1
o7 0 0 0 0 1 1 0 1 0 0 0
o8 0 0 1 1 1 1 0 1 1 1 0

The set of minimal regions with minimal frequency in the context of 3 and
bounded left and right by at least 2 examples is {[b1..b1], [b3..b3], [b5..b6], [b8..b10]}.

We have designed [27] an algorithm that computes all minimal constrained GL
regions, given a three valued context (Gain/Normal/Loss). We will not describe
it here, but we will rather focus on assessing how such local patterns can make the
extraction of discriminant rules from our genomic data tractable and efficient.

4 Mining the Reformulated Data for Discriminant
Patterns

For this second step, our language of patterns is that of itemsets of constrained
GL regions. This mining task can be seen as finding patterns of GL regions
that satisfy the conjunction of a monotone and an anti-monotone constraint. As
the monotone and anti-monotone constraints do not apply on the same context,
it has not been possible to make the evaluation of both monotone and anti-
monotone constraints more efficient by reducing the input context as done in
Examiner [7].

Discriminant patterns as described in definition 4 are a special case emer-
gent patterns given two data collections [14]. The growth rate of a pattern p,
considering two contexts M+ and M− is the ratio freq(p,M+)

freq(p,M−) , and an emergent
pattern is a pattern the growth-rate of which is higher than a fixed threshold.
The algorithm described in [14] relies on the computation of maximal bounds

142 Céline Rouveirol and Francois Radvanyi

both for the anti-monotone constraint and the negation of the monotone con-
straints. The computation of such maximal bounds was empirically evaluated as
too computationally expensive, specially when mining with low min frequency
thresholds, both in the positive and negative contexts. More recent emerging
patterns algorithms [31] might be a solution to that problem. In the meantime,
we have implemented and adapted the Dualminer algorithm [10], because it is
flexible and it allows the simultaneous handling of monotone and anti-monotone
constraints. We remind here the main algorithms of Dualminer and their adap-
tation to solve our learning task.

Dualminer explores a state graph, the nodes of which are sub-algebras of
itemsets of S. Each sub-algebra state is a set of itemsets which are by delimited
by a lower and upper bound. Each state state is represented by:

– IN(state): the upper bound of state, it contains attributes that belong to
all itemsets of state

– OUT (state) : attributes that do not belong to any itemset of state. The
complement of OUT (state) in S is the lower bound of state

– CHILD(state) : candidate attributes for expansion of state.

Notice that IN(state)∪OUT (state)∪CHILD(state) = S, i.e. the set of all GL
region attributes. Let compl(s), where s ∈ S, denote the complement set of s in
S, i.e. S \ s.

In the following, P sets a minimum frequency for GL region patterns in the
positive context Mr+ (anti-monotone constraint) and Q dually sets a maximum
frequency for GL region patterns in the negative context Mr− (monotone con-
straint). A leaf of the search space is a state such that CHILD(state) = ∅.

Example 2. The context of example 1, given the set S computed and the fact that
observations o1 to o4 are labelled as positive and observations o5 to o8 are labelled
as negative yields the following contexts Mr+ and Mr− on S = {s1, s2, s3, s4}:

s1 s2 s3 s4

o1 1 0 1 1
o2 1 0 1 0
o3 1 1 1 1
o4 0 0 0 1

s1 s2 s3 s4

o5 1 0 1 1
o6 0 1 1 0
o7 0 0 1 0
o8 0 1 1 1

Given the constraints P = freq(p, Mr+) ≥ 2 and Q = freq(p, Mr−) ≤ 1, the
solution of the mining task is the sub-algebra < s1, s1s3s4 >, that stands for the
three GL region patterns {s1, s1s3, s1s3s4} .

Search starts from a state with empty IN and OUT sets and with a CHILD
set containing all attributes of S. Each IN set of a state to be explored state
is first checked against P . If IN(state) does not satisfy P , search jumps to
the next unexplored state. Otherwise, state is simplified by iterative calls to
Mono prune and Anti prune algorithms (see figure 2) until no more pruning
can be performed. When the state cannot be further simplified, it is checked
against Q. If it satisfies Q, IN(state), compl(OUT (state) is a solution, and search

Local Pattern Discovery in Array-CGH Data 143

proceeds directly to the next unexplored state. Otherwise, state is expanded into
two descendants: its left descendant is equal to state except for one element of
CHILD(state) that moves to its IN set, whereas the second descendant is
obtained by moving the same element to its OUT set. Search stops when no
more state can be developed.

Anti prune prunes the CHILD set of the state, by adding to OUT any
attribute x such that IN(state)∪x does not satisfy the anti-monotone constraint
P (i.e., freq((IN(state) ∪ x), Mr+) < min threshold). Mono prune transfers
from the CHILD set to the IN all attributes x such that compl(OUT (state)∪x)
does not satisfy Q, i.e., freq(compl(OUT (state) ∪ x), M−) > max threshold).
Both prunings are mutually dependent : an addition to the IN set triggers
Anti prune, whereas an addition to the OUT set triggers Mono prune, until
IN and OUT reach a fixed point.

Anti_prune (state)

For all x ∈ CHILD(state) do

If IN(state) ∪ x does not satisfy P then

CHILD(state) := CHILD(state) - x

OUT(state) := OUT(state) ∪ x

Mono_prune (state)

For all x ∈ CHILD(state) do

if compl(OUT(state) ∪ x) does not satisfy Q then

CHILD(state) := CHILD(state) - x

IN(state) := IN(state) ∪ x

Fig. 2. Monotone and anti monotone pruning

Example 3. After example 2, the search starts from the state statei such that
IN(statei) = OUT (statei) = ∅, and CHILD(statei) = S = {s1, s2, s3, s4}.
Anti Prune moves s2 from CHILD(statei) to OUT (statei) and Mono Prune
moves s1 to IN(statei). statei cannot be further simplified. IN(statei) sat-
isfies both P and Q, therefore one solution sub-algebra is < IN(statei) =
s1, compl(OUT (statei)) = s1s3s4 >. Search then stops because no more state
can be generated.

4.1 Constructing Classifiers

A sub-algebra result of Dualminer concisely describes a set of patterns satisfying
both constraints P and Q of the problem. In our case, assuming a boolean class
attribute C, whose positive examples belong to M+ and whose negative examples
belong to M−, Dualminer builds a set of discriminant GL region patterns for C.
As noted in [19], each isolated discriminant pattern has a very poor accuracy
and recall. Learning a classifier for C with low recall and using the default

144 Céline Rouveirol and Francois Radvanyi

classification rule that if none of the patterns for C recognises a new observation,
it is classified as not belonging to C, would lead to a very large prediction
error. Therefore, we have adopted the strategy of building a classifier both for
concept C and its complement that we denote notC, in order to bound the
prediction error as much as possible (no classification is better than a systematic
error). Given the positive and negative contexts (M+, M−) and the min and max
frequency thresholds (smin+, smax−, smin−, smax+), our algorithm builds:

– a set of sub-algebras representing all GL region patterns p satisfying both
freq(p, M+) ≥ smin+ and freq(p, M−) < smax−: these complex patterns
are characteristic for observations of M+;

– dually, a set of sub-algebras representing all GL regions patterns p′ satisfying
freq(p′, M−) ≥ smin− and freq(p′, M+) < smax+: these complex patterns
are characteristic for M−.

The upper bound (i.e., the IN sets) of each resulting sub-algebra is selected and
tested for statistical significance, performing a χ2 test on the 2x2 contingency
table for the pattern wrt class C, with threshold of 3.84 (corresponding to a 95%
p-value). A final selection step only keeps the most general significant patterns.
We denote in the following pi+, 1 ≤ i ≤ NP+ as the set of patterns characteristic
for class C and pj−, 1 ≤ j ≤ NP− as the set of characteristic patterns for class
notC.

A new observation (whose class is unknown) is classified as follows: all pat-
terns for C and notC are checked on the new observation. The observation gets
a vote for class C each time there is a pattern pi+ for class C such that pi+ ⊆ o.
Symmetrically, o gets a vote for notC each time there is a pattern pj− for class
notC such that pj− ⊆ o. The class of o is¡ computed as the majority class for all
votes. If there is no pattern for C or notC that recognises (i.e., is included in)
observation o, or if o gets the same number of votes for both C and notC, the
observation is not classified.

5 Validation

We have applied the chain (extraction of constrained GL regions - reformulation
- extraction of discriminant GL patterns) we have just described to a array-CGH
dataset about bladder cancer patients. The dataset contains 92 CGH arrays (8
normal samples and 84 tumoral samples) described in terms of about 2400 BAC
attributes, about equally distributed on 24 chromosomes (22 + chromosomes X
and Y). We have selected two possible class attributes in this application, the
stage of the tumour and whether a specific gene, namely FGFR3, is mutated
in the tumour or not. The stage corresponds to the depth of invasion by the
tumour cells of the surrounding tissue (Ta: papillary tumour with no invasion
of the basal membrane, T1: tumour which invades the basal membrane but not
the underlying smooth muscle, T2: tumour which invades the smooth muscle,
T3: tumour which invades perivesical tissue, T4: tumour which invades a neigh-
bouring organ). Increasing index of stage corresponds to an increasing severity

Local Pattern Discovery in Array-CGH Data 145

of cancer. FGFR3 mutation is already known to be an important feature for
bladder cancer, as it has been frequently observed, most often in non invasive
cancers) [6].

Stage of tumour is available for all tumours, and split into 26 Ta, 16 T1, 10 T2,
14 T3 and 18 T4, we will look here for patterns characterising invasive tumours
(stage = Ti, i ≥ 2, 42 of them) against non invasive tumours (stage = Ta or T1,
42 of them also) and vice-versa. FGFR3 mutation is available for 73 tumours
(29 mutated, 44 not mutated).

5.1 Computing Region Attributes – Reformulating Data

GL regions have been computed with different minimal frequency thresholds:
5% (4) and 10% (8) in the tumoral samples, different minimal number of obser-
vations defining the regions. Finally, we selected minimal GL regions only, or all
GL regions satisfying the above constraints. Although selecting the best param-
eters for this step (and thus, the best abstraction step for mining discriminant
genomic patterns) is crucial, we will not address it here. We will rather present
some figures for the best results obtained by leave-one-out validation, both for
the FGFR3 mutated/non mutated and the invasive/non invasive tumour classi-
fication tasks, obtained with the following parameter values: 5% min frequency
threshold, 2 observations minimum for delimiting a region and minimality of
regions. In this configuration, about 70 GL regions are obtained.

When increasing the min frequency threshold to 10%, only about 35 minimal
GL regions are computed. A similar behaviour is observed when strengthening
the constraint on the minimal number of observations “defining” a region. On the
other hand, if the minimality constraint on GL regions is relaxed, 90 GL regions
are computed. We give some yet intuitive reasons why all these configurations
yield to worst prediction results. Finally, note that, in the best configuration
described above, 13 observations (over 84) are lost because none of the GL
regions computed occur in those observations.

5.2 Computing Discriminant Patterns

For evaluating the performance of combining GL region reformulation and dis-
criminant pattern learning, we have performed a leave-one-out validation. Mini-
mal GL regions are extracted from a training set of size NO − 1, the training set
is then reformulated given the GL regions, as well as the test example. The test
example is then classified given the discriminant GL region patterns extracted
from the reformulated training set. This process is repeated for all observations
in the context. We provide in the following some figures in the tables in the
annex as well as in the figures 3, 4 and 5. The discriminant patterns provided in
figures 6 are the most stable ones, i.e. those that were most frequently obtained
over the different runs of the leave-one-out validation.

Figure 3 shows that the predictions results are relatively good for the task of
discriminating FGFR3 mutated samples against non FGFR3 mutated samples.
For all values of smin+ and smin−, we observe that learning patterns without

146 Céline Rouveirol and Francois Radvanyi

Fig. 3. Leave-one-out evaluation of discriminant patterns for FGFR3 mutation,
with smin+ = 5%(2). smin− varies from 5% (3) to 20% (9), smax+ and smax−
vary between 0 and 2. The number of negative (resp. positive) examples is not
allowed to be greater than half the number of positive (resp. negative) examples.

exceptions (smax+ = smax− = 0) yields bad predictive results. This supports
the fact that data are noisy. In particular, increasing smax− from 0 to 1 increase
the number of correct predictions by 1/3. Best performances are obtained with
smax− = 1 and smax+ = 2. In both configurations of figures 3 and 4, the
number of incorrectly classified examples is very low wrt the number of well
classified examples and a majority of those examples are false negatives. In those
two configurations, the number of unclassified examples is not negligible, but still
significantly lower than the number of well classified examples. It follows that
our classifier based on patterns of gains and loss of chromosomes fragments is a
reasonable predictor for FGFR3 mutation status. The best prediction (43 well
classified examples) is reached for smin+ = 5%, with smin− = 15%, smax− = 1
and smax+ = 2 and for smin+ = 20%, with smin− = 10 or 15%, smax− =
1 and smax+ = 2. All other parameters being fixed, increasing smin+ does
not significantly improve the prediction performance (see figures 3 and 4). This
means that there are few predictive patterns associated to FGFR3 (see figure 6)
and that these patterns occur with a high frequency in M+.

The landscape is quite different when attempting to find discriminant GL
regions patterns for class invasive vs non invasive. First, the number of unclas-
sified examples is much greater than for the previous discrimination problem (in
the best configuration, similar to the number of well classified examples).

Local Pattern Discovery in Array-CGH Data 147

Fig. 4. Leave-one-out evaluation of discriminant patterns for FGFR3 mutation
with smin+ = 20%(8). smin−, smax+ and smax− vary as in figure 3

The reason for this behaviour is that there are very few GL region pat-
terns for non invasive tumours, and all with low support. If smin+ ≥ 10%, the
set of patterns for the class of non invasive tumours is empty, the prediction
performances are those of patterns for invasive tumours only. The prediction
performance is insensitive to value of smax−, but improves significantly when
smax+ increases from 0 to 1, and then degrades when increasing smax+ to 2
(the number of false negative increases), all other parameters being fixed. No
prediction is correct if smin− is equal to 20%. The best performance, although
more modest as that obtained for FGFR3 mutated vs non mutated, is obtained
for smin+ = smin− = 10% and smax+ = 1. Let us notice that some of the
patterns obtained, such as the first rule for invasive tumours (see figure 6) have
already been reported in the literature [11]. Further evaluation of the rules is
currently going on.

Finally, we have tested the whole (reformulation + discriminant learning)
process on different reformulations of the initial data. On one hand, the mini-
mality constraint for GL regions has been relaxed, on the other hand, we have
computed minimal GL region attributes with a min support threshold of 10% or
the number of observations delimiting a region has been increased. In all cases,
consistently worst prediction results were obtained. In the first case, discrimi-
nant patterns had a slightly worse prediction. This is certainly due to the fact
that some of the GL region patterns selected after the χ2 test were built using
some of the more specific (non minimal) GL regions : as a result, the resulting
classifiers loose some of their prediction. In the latter case, the prediction per-
formance degraded significantly, in particular due to the fact that the number of

148 Céline Rouveirol and Francois Radvanyi

Fig. 5. Leave-one-out evaluation of discriminant patterns for stage, with
smin+ = 10%(4)

false negatives increased at lot. This certainly indicates that a too stringent se-
lection on GL regions has taken place and that some information relevant to the
discrimination process has been lost. These results fully demonstrate, without
surprise, that mining steps after reformulation are very sensitive to the quality
of extracted local patterns. This is why the language to describe the constraints
on those local patterns has to be as rich as possible.

Discriminant patterns we obtained for classes invasive vs. non invasive and
FGFR3 mutated vs. non mutated are less than a hundred, and this small number
makes it possible to think about delivering it to an expert for inspection.

6 Conclusion

We have described in this paper a method that learns discriminant patterns from
discrete data representing the number of occurrences of a sets of chromosome
segments (i.e., BACs) in DNA extracted from different tumours of the same
type. This method decomposes the resolution of extraction problem in which the
number of attributes is high wrt to the number of observations into two steps :
first, finding a relevant reformulation (here, reccurrent Gain/Loss sequences on
the human genome) that allows abstracting the initial problem into a simpler
one, that still retains important features from the initial problem but has a much
smaller number of attributes. There is of course a high number of such possible
reformulations, and we have relied on biological knowledge to select those we
have evaluated in this paper.

Local Pattern Discovery in Array-CGH Data 149

if RP11-28N6 - RP11-118C13 [9p24.3] is lost and

RP11-14J9 - CTD-3145B15 [9q21.13] is lost then FGFR3 is mutated

if RP11-18B9 - RP11-18D13 [11p12] is lost and

RP11-14J9 - CTD-3145B15 [9q21.13] is lost then FGFR3 is mutated

if RP11-102K7 - RP11-10G10 [8q22.2] is gained then FGFR3 is not mutated

if RP11-40D5 - RP11-40D5 [4q28.3] is lost then FGFR3 is not mutated

if CTD-2202A14 - CTD-2202A14 [5q32] is lost and

RP11-28N6 - RP11-118C13 [9p24.3] is lost then tumour is not invasive

if RP11-32H11 - RP11-32H11 [10q26.2] is lost then tumour is invasive

if RP1-32G10 - RP1-32G10 [Yp11.31] is lost and

RP1-24H17 - RP1-24H17 [5p15.33] is gained then tumour is invasive

if RP11-240A17 - RP11-50E20 [8p23.3] is lost and

RP11-102K7 - RP11-10G10 [8q22.2] is gained then tumour is invasive

Fig. 6. Excerpt of discriminant patterns for FGFR3 mutated vs. non mutated
tumours and for non invasive (stage < T2) vs. invasive tumours (stage ≥ T2) in
bladder cancer. GL regions are denoted by their starting and ending BACs. The
location of the BAC sequence on chromosomes is given into brackets.

This approach of looking for all discriminant patterns in a given langage is
quite opposed to the strategy of many heuristic machine learning (such as de-
cision tree systems [25]) that build a single set of rules, from a tree built by
selecting at each node the test that optimizes a heuristic measure, such as in-
formation gain. The model that we have of our application domain is too weak,
and, in particular, we have too few hints about the underlying distribution of
our observations, to use such methods. We therefore rely on exhaustive symbolic
methods and on experts of the domain that can interpret and evaluate the re-
sults. The type of approaches we have presented here can be computationally
expensive [9], but it provides results which are relatively easy to interpret by an
expert, and in a relatively small number due to the strong bias introduced by
the representation change.

This work has numerous perspectives. The first one is the issue of scaling up,
in order to handle more complex data, such as the very recent array-CGH which
measures genomic alterations at 30,000 different BACs instead of about 3,000
[17] SNP-arrays, or gene expression micro-arrays. This may lead us to relax the
completeness dogma we have adopted until now. In that case, we may investigate
the sequential sampling strategy [29]. Another way to extend this work would
be to enrich the language of local patterns to represent additional information
concerning the samples, or the function of genes included in the regions or close
to the regions. This seems a promising way to augment the recall and precision
of the discriminant patterns already obtained.

Acknowledgements This research has been made possible thanks to close collab-
orations with D. Chopin group (EMI 0337, INSERM, Hôpital Henri Mondor, Créteil),
with D. Pinkel (Cancer Center, UCSF, USA) and with the Bioinformatics group of

150 Céline Rouveirol and Francois Radvanyi

Institut Curie, supervised by E. Barillot. We wish to thank Ph. Hupé for the GLAD
software, Ph. La Rosa for the visualisation interface for CGH data, MAIA. Thanks
to N. Stransky for his many suggestions concerning CGH data manipulation, to W.
Wynant for his advice on the statistical evaluation of the obtained rules and to A.V.
Salle for her support in data preparation. This work has been partially supported by
the european project HKIS IST-2001-38153.

References

1. D.G. Albertson, C. Collins, F. McCormick, and J.W. Gray. Chromosome aberra-
tions in solid tumors. Nat Genet, 34:369–76, 2003.

2. C.F. Aliferis, D. Hardin, and P.P. Massion. Machine learning models for lung cancer
classification using array comparative genomic hybridization. In Proc AMIA Symp.
2002, pages 7–11, 2002.

3. R.J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining in
large, dense databases. Data Mining and Knowledge Discovery, 4:217–240, 2000.

4. C. Becquet, S. Blachon, B. Jeudy, J.F. Boulicaut, and O. Gandrillon. Strong
association rules mining for large gene expression data analysis : a case study on
human SAGE data. Genome Biology, 12, 2002.

5. J. Besson, C. Robardet, J.F. Boulicaut, and S. Rome. Constraint-based concept
mining and its application to microarray data analysis. Intelligent Data Analysis,
9. to appear.

6. C. Billerey, D. Chopin, M.H. Aubriot-Lorton, D. Ricol, S. Gil Diez de Medina, B.
Van Rhijn, M.P. Bralet, M.A. Lefrère-Belda, J.B. Lahaye, C.C. Abbou, J. Bonaven-
ture, E.S. Zafrani, T. Van der Kwast, J.P. Thiery, and F. Radvanyi. Frequent
FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am. J. Pathol.,
158:1955–1959, 2001.

7. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Examiner: Optimized
level-wise frequent pattern mining with monotone constraints. In Proc. of the
Third IEEE Int. Conf. on Data Mining (ICDM’03), 2003.

8. F. Bonchi and C. Lucchese. On closed constrained frequent pattern mining. In
Proc of the Fourth International Conference on Data Mining (ICDM’04). Morgan
Kaufmann, 2004.

9. E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On the complexity of gener-
ating maximal frequent and minimal infrequent sets. In Symposium on Theoretical
Aspects of Computer Science, pages 133–141, 2002.

10. C. Bucila, J. Gehrke, D. Kifer, and W. White. Dualminer: A dual-pruning al-
gorithm for itemsets with constraints. Data Mining and Knowledge Discovery,
7:241–272, 2003.

11. D. Cappellen, S. Gil Diez de Medina, D. Chopin, JP. Thiery, and F. Radvanyi.
Frequent loss of heterozygosity on chromosome 10q in muscle-invasive transitional
cell carcinomas of the bladder. Oncogene, 14:3059–66, 1997.

12. K. Chin, C. Ortiz de Solorzano, D. Knowles, A. Jones, W. Chou, E. Garcia Ro-
driguez, W.L. Kuo, B.M. Ljung, K. Chew, K. Myambo, M. Miranda, S. Krig,
J. Garbe, M. Stampfer, P. Yaswen, J.W. Gray, and S.J. Lockett. In situ analyses
of genome instability in breast cancer. Nat Genet, 36:984–988, 2004.

13. A. Clare and R.D. King. Predicting gene function in saccharomyces cerevisiae.
Bioinformatics, 19 Suppl. 2:ii42–ii49, 2003.

Local Pattern Discovery in Array-CGH Data 151

14. G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and
differences. In Knowledge Discovery and Data Mining, pages 43–52, 1999.

15. W. C Hahn and R.A. Weinberg. Modelling the molecular circuitry of cancer.
Nature, 2:331–341, 2002.

16. P. Hupé, N. Stransky, J.P. Thiery, F. Radvanyi, and E. Barillot. Analysis of array
CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics,
12:3413–22, 2004.

17. A.S. Ishkanian, C.A. Malloff, S.K. Watson, R.J. DeLeeuw, B. Chi, B.P. Coe,
A. Snijders, D.G. Albertson, D. Pinkel, M.A. Marra, V. Ling, C. MacAulay, and
W.L. Lam. A tiling resolution DNA microarray with complete coverage of the
human genome. Nat Genet, 36:299–303, 2004.

18. S. Kramer and L. De Raedt. Feature construction with version spaces for bio-
chemical application. In Proc of the 18th International Conference on Machine
Learning (ICML-2001). Morgan Kaufmann, 2001.

19. J. Li, G. Dong, K. Ramamoharao, and L. Wong. DeEPs: a new instance-based
discovery and classification system. Machine Learning, 54:99 – 124, 2004.

20. J. Li and L. Wong. Identifying good diagnostic gene groups from gene expression
profiles using the concept of emerging patterns. Bioinformatics, 18:725–734, 2003.

21. G. Mercier, N. Berthault, J. Mary, J. Peyre, A. Antoniadis, J.P. Comet, A. Cor-
nuejols, C. Froidevaux, and M. Dutreix. Biological detection of low radiation doses
by combining results of two microarray analysis methods. Nucleic Acids Res., 32,
2004.

22. F. Pang, G. Cong, A.K.H Tung, J. Yang, and M. Zaki. Carpenter : Finding closed
patterns in long biological datasets. In Proc of SIGKDD’03, 2003.

23. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In 7th Intl. Conf. on Database Theory, pages 398–
416, 1999.

24. J. Pei, J. Han, and R. Mao. Closet an efficient algorithm for mining frequent closed
itemsets. In Proc. of the ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD), 2000.

25. J.R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufman, 1993.
26. F. Rioult, J.F. Boulicaut, B. Crémilleux, and J. Besson. Using transposition for

pattern discovery from microarray data. In Proc. of the 8th ACM SIGMOD Work-
shop on Research Issues in Data Mining and Knowledge Discovery (DMKD03),
pages 73–79, 2003.

27. C. Rouveirol et al. Computation of minimal recurrent gain and loss regions from
array-CGH data. Extended version of JOBIM2004, in preparation.

28. L. Saitta and J.D. Zucker. Semantic abstraction for concept representation
and learning. In Symposium on Abstraction, Reformulation and Approximation
(SARA98), pages 103–120, 1998.

29. T. Scheffer and S. Wrobel. Finding the most interesting patterns in a database
quickly by using sequential sampling. Journal of Machine Learning Research,
3:833–862, 2002.

30. A.M. Snijders, N. Nowak, R. Segraves, S. Blackwood, N. Brown, J. Conroy,
G. Hamilton, A.K. Hindle, B. Huey, K. Kimura, S. Law, K. Myambo, J. Palmer,
B. Ylstra, Y.P. Yue, J.W. Gray, A.N. Jain, D. Pinkel, and D.G. Albertson. As-
sembly of microarrays for genome-wide measurement of DNA copy number. Nat
Genet, 29:263–4, 2001.

31. A. Soulet, B. Crémilleux, and F. Rioult. Condensed representation of emerging
patterns. In Proc. PAKDD 2004, pages 127–132, 2004.

152 Céline Rouveirol and Francois Radvanyi

Appendix

smi+ smi− sma− sma+ corrFP FN uncl.

5 5 0 0 24 2 5 32
5 5 1 1 39 1 5 18
5 10 0 0 24 2 5 32
5 10 1 2 41 0 5 17
5 15 0 0 22 3 4 34
5 15 1 2 41 1 4 17
5 20 0 0 19 3 2 39
5 20 1 2 40 1 3 19
10 5 0 0 24 2 5 32
10 10 1 2 41 0 5 17
10 15 0 0 22 3 4 34
10 15 1 2 41 1 4 17
10 20 0 0 19 3 2 39
10 20 1 2 40 1 3 19
15 5 0 0 24 0 5 34
15 5 2 1 39 1 5 18
15 10 0 0 24 0 5 34
15 10 1 2 43 0 5 15
15 15 0 0 23 1 4 35
15 15 1 2 42 1 4 16
15 20 0 0 20 1 2 40
15 20 1 2 41 1 3 18
20 5 0 0 24 0 5 34
20 5 1 1 40 1 5 17
20 10 0 0 24 0 5 34
20 10 1 2 43 0 5 15
20 15 0 0 23 1 4 35
20 15 1 2 42 1 4 16
20 20 0 0 20 1 2 40
20 20 1 2 41 1 3 18

smi+ smi− sma− sma+ corrFP FN uncl.

5 5 0 0 25 1 9 38
5 5 0 1 31 1 10 31
5 10 0 0 10 2 8 53
5 10 0 1 30 1 9 33
5 15 0 0 8 2 5 58
5 15 0 1 22 1 9 41
10 5 0 0 26 0 9 38
10 5 0 1 31 0 10 32
10 10 0 1 30 0 9 34
10 10 0 0 11 0 8 54
10 15 0 0 9 0 5 59
10 15 0 1 23 0 9 41

Fig. 7. Excerpt of leave-one-out validation results for the class FGFR3 mu-
tated/non mutated (left) and invasive/non invasives (right). For each pair smin+

and smin−, we provide the values for smax− and smax+ which give the best
and worst predictions . corr: number of corrected classified examples, FP: num-
ber of false positives, FN: number of false negatives, uncl.: number of examples
which are be classified (tie)

Learning with Local Models

Stefan Rüping

University of Dortmund, 44221 Dortmund, Germany,
rueping@ls8.cs.uni-dortmund.de,
http://www-ai.cs.uni-dortmund.de/

Abstract. Next to prediction accuracy, the interpretability of models is
one of the fundamental criteria for machine learning algorithms. While
high accuracy learners have intensively been explored, interpretability
still poses a difficult problem, largely because it can hardly be formal-
ized in a general way. To circumvent this problem, one can often find a
model in a hypothesis space that the user regards as understandable or
minimize a user-defined measure of complexity, such that the obtained
model describes the essential part of the data. To find interesting parts
of the data, unsupervised learning has defined the task of detecting local
patterns and subgroup discovery. In this paper, the problem of detecting
local classification models is formalized. A multi-classifier algorithm is
presented that finds a global model that essentially describes the data,
can be used with almost any kind of base learner and still provides an
interpretable combined model.

1 Introduction

It is commonplace knowledge that more and more data is collected everywhere
and that the size of data sets available for knowledge discovery is increasing
steadily. On the one hand this is good, because learning with high-dimensional
data and complex dependencies needs a large number of examples to obtain
accurate results. On the other hand, there are several learning problems which
cannot be thoroughly solved by simply applying a standard learning algorithm to
all the available examples. While the accuracy of the learner typically increases
with example size, other criteria are negatively affected by too much examples.
This paper will deal with the criterion of interpretability of the learned model,
which is an important, yet often overlooked aspect for applying machine learning
algorithms to real-world tasks.

The key problem with interpretability is that humans are very limited in the
level of complexity they can intuitively understand [10]. An optimal solution of
a high-dimensional, large-scale learning task, however, may lead to a very large
level of complexity in the optimal solution. What can we do about this problem?
Experience shows that one can often find a simple model which provides not an
optimal solution, but a reasonably good approximation. The hard work usually
lies in improving an already good model. Hence, we can try to find a simple
model first and then concentrate on improving only those parts of the input

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 153–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 Stefan Rüping

space, where the model is not good enough. This will be an easier task because
less examples have to be considered and hence one might use a more sophisticated
learner. In other words, one constructs not one single global model for all the
data, but a global model plus one or more local models to cover special cases.
Also, for the aspect of discovering new knowledge, it may happen that the global
model finds only the obvious patterns in the data that domain experts are already
aware of. Patterns are more informative, if they are surprising [8], i. e. if they
contradict what is already known. Hence, it may also be the case that the local
models actually contains the interesting cases.

To avoid problems with finding general measures of complexity for arbitrary
models, this paper takes a very hands-on approach to interpretability: The user
is allowed to use an arbitrary global learner, such that he can pick the learner
whose results are the most understandable to him. He is also allowed to use
an arbitrary clustering algorithm, which will be used to identify where to use
the global algorithm and where not. So he can use the clusterer which will give
him the most understandable description, where his global algorithm is right. To
improve accuracy, a high-performance local learner is used to predict the rest of
the examples, as long as the deviation from the global model remains below a
user-defined threshold.

Summing up, the goal of this paper is to develop an hierachical, multi-
classifier algorithm for learning local models which

1. learns a global model that sums up the essential properties of the data
2. can use (almost) every kind of learner to find the global and local base

models
3. reduces a given criterion of model complexity for the global model.

The rest of the paper is organized as follows: The next section will discuss
a broader picture of local models, complexity and interpretability. Readers that
are only interested in the proposed local model algorithm may skip this section.
Section 3 will review some learning algorithms which will be needed as parts of
our hierachical approach. The new local model algorithm will be presented in
Section 4, while Section 5 will discuss related approaches. Experimental results
are given in Section 6 and Section 7 gives some conclusions.

2 Local Models

There are two aspects to local models: structure and performance. The struc-
tural aspect refers to the case where the optimal model of the data is composed
of several parts that have a meaningful interpretation in terms of the appli-
cation. This may be the case because the structure behind the data can only
be expressed in a combination of hypothesis spaces of several standard learners
(e. g. a combination of numerical and logical rules) or because there are limits
in terms of interpretability. The performance aspect of local models refers to the
case that a good model can theoretically be found by a single learner on the
whole example set, but it is more efficient to use separate learning runs. Here,

Learning with Local Models 155

the distinction between global and local models is only meaningful in terms of
algorithmic complexity and time and space requirements, but not in any intrinsic
way.

? + −

Fig. 1. Relationship between local patterns and local models. The left circle is
a local pattern, but only a local model if its class is negative.

There is an obvious connection between local models and the detection of
local patterns [9]. Local pattern or subgroup detection is defined as the unsu-
pervised detection of high-density regions in the data. There are several way to
formalize local patterns. In the scope of this paper, local patterns are defined as
follows:

Definition: Given an input space X and some default probability measure
PDefault(X), a local pattern is a subset X ′ of X such that the empirical
probability1 of X ′ is significantly different from PDefault(X ′).

The idea is that the user already has some idea of what his data looks like (for
example he assumes that all items in a store are bought independently of one
another) and he his interested in cases where his beliefs are wrong (for example
an association rule describing which items are often bought together). In con-
trast, local models are meant to improve the classification, hence the interesting
quantity is the class probability P (y|x).

Definition: Given an input space X × Y and a default (or global) class prob-
ability measure PDefault(Y |X), a local model is a subset X ′ of X such
that the empirical probability Pemp(Y |X ′) is significantly different from
PDefault(Y |X ′), plus a classification rule with input space X ′.

Here, the user will not be bothered with deviations from the data to his beliefs,
as long as this does not have an influence on the attribute of interest y. The
difference can be seen in Figure 1. In a local pattern task, the default probability
could be a Gaussian approximating the large batch of data in the circle on the
right and the corresponding local model would be a smaller Gaussian describing
1 The empirical probability of X ′ is the frequency of X ′ observed in the data, in

contrast to the expected frequency as defined by P (X ′).

156 Stefan Rüping

the circle on the left. In a local classification task, an obvious default model
would be the vertical line through the large circle, classifying all points to its
right as negative and the points to its left as positive. In contrast to the local
pattern case, the smaller circle will only be a local model if its class is negative,
i. e. different from the one predicted by the default model. Summing up, the
difference between both tasks is that in local model detection the goal is not to
just find regions with unsuspected density, but to identify those which can be
used to improve the overall performance, e. g. the classification accuracy.

Given these definitions it is obvious that the local model task can be solved by
detecting local patterns in the misclassified examples of the default classification
rule. This approach learns a very simple classification model: predict the negative
of the default rule. Its disadvantage is, that the simplicity of the classifier may
lead to the problem of learning very complex patterns. So the complexity of the
classification is not removed, but only transferred to the decision, where to apply
the classifier, i. e. the local patterns. As the classification problem is usually much
better investigated in machine learning than the local pattern problem, it will
usually be better to define a more simple pattern together with a more complex
decision function, see Figure 2. We will take this approach in this paper.

+ −+
−−

Fig. 2. Given the surrounding data is negative, the positive data can be marked
in two ways: a complex cluster plus a trivial classifier (default positive, right)
versus a trivial cluster (circle) plus a complex classifier (twisted line, right).

From the perspective of interpretability, the use of simple local patterns to-
gether with a more complex local classifier allows to better separate the local
and global models, because it minimizes the interactions between both models.
It allows to interpret both models on its own without the need to take interac-
tions into account, which account for a large part of the complexity of the overall
classifier.

Talking about interpretable models, one has to acknowledge that the concept
of interpretability is very hard to formalize. Interpretability of models is often
evaluated by interviewing a human expert, but reliable information is hard to
come by, as this would need a survey of several independent human experts.
Findings from psychology show that the size of the models plays some part, as
humans are usually only able to deal with about seven cognitive units at the
same time [10]. This motivates certain measures of model complexity like the
number or length of rules in logical models [18], which are traditionally assumed

Learning with Local Models 157

to be more interpretable than other approaches, as logical rules can be easily
cast into sentences in natural language. However, experience shows that the ex-
perience of humans with interpreting the kind of model or its visualisation plays
a crucial role. Plainly, humans tend to find the things the most interpretable,
they are already acquainted with. Concludingly, this paper takes a very prag-
matic approach to the question of interpretability: let the user choose whatever
learning algorithm he likes best and optimize a user-given criterion of model
complexity.

3 Learning Algorithms

In this section we will shortly introduce the learning algorithms that were used
in the experiments in this paper. A detailed discussion of these algorithms is
beyond the scope of this paper, we will restrict ourselves to those properties
that are of interest for the course of this paper. The learning tasks to solve are
both density estimation and probabilistic classification.

3.1 Density Estimation

Several algorithms exists for the approximation of a density P (x) from examples
(xi). We limit this discussion to the approximation by a Gaussian as the proto-
typical parametric approach and probably easiest density estimation technique.

To approximate the data by a Gaussian distribution one has to notice that
the multivariate Gaussian is completely determined by its mean and covariance
matrix. Hence, it suffices to calculate the mean and covariance matrix of the data
and substitute it into the Gaussian distribution. This is a very simple algorithm,
but also a very unflexible, as it is limited to a very special parametric form.
However, it turns out that this is sufficient for the local model algorithm of this
paper, as we do not need to approximate the density excactly, but only need the
densities to separate different local regions in the input space in order to split
the classification model up into less complex parts. This approach is similar to
the well-known k-means clustering algorithm, where one is not interested in the
form and density of each cluster itself, but only in the border line between each
cluster and the rest.

What is important in the course of this paper is the robustness of the density
estimation. Robustness means that if a certain fraction of examples is not drawn
from the distribution of interest, this should have little influence on the estimated
density. Standard estimates of mean and covariance can be heavily distorted by
far away outliers and hence the trivial Gaussian approximation is not robust. In
this paper, we use the Minimum Covariance Determinant estimator [15], which
searches for a subset of the examples of given size such that the determinant
of its covariance matrix becomes minimal and hence, the examples are located
very close together. The mean and covariance of this subset are then again used
to define a Gaussian density.

158 Stefan Rüping

3.2 Probabilistic Classification

The goal of probabilistic classification is to not only find a classifier, but also
an estimation of the conditional class probability P (y|x). A general, but very
coarse solution is to use the classifiers accuracy or its precision for the positive
and negative class, respectively.

Numerical classifiers, i. e. classifiers of the form cl(x) = sign(f(x)), can
be transformed into probabilistic classifiers by finding an appropriate scaling
function σ such that P (Y = 1|x) = σ(f(x)). This scaling function can be found
by minimizing the cross-entropy

CRE =
∑

i:yi=1

log(σ(f(x))) +
∑

i:yi=−1

log(1 − σ(f(x)))

or the mean squared error

MSE =
1
n

∑
i

(
1 + yi

2
− σ(f(x)))2

over the space of applicable scaling functions.
In this paper Support Vector Machines [22] are used as numerical classifiers.

For Support Vector Machines, appropriate scaling procedures have been inves-
tigated in [12,16]. A generic scaling function for a large variety of learners has
also been proposed in [7]. Other classifiers can directly give an estimate of the
conditional class probability, for example decision trees [14] where the class dis-
tribution at each leaf or its laplacian correction can be used as an estimator of
the class probability of an observation classified by this leaf.

3.3 Interpretable Learners

One of the goals of this paper is the interpretability of the classifier. As was
already pointed out in the introduction, the user may in principle prefer any
kind of classifier. In the following, we limit the discussion to decision trees as
interpretable learners, because they have some favourable properties with respect
to interpretability: First, decision trees can be easily visualised, because they
consist of a simple tree structure and simple tests. They can alse be transformed
into a set of independent rules, which the user can investigate one after the
other. Secondly, there are two simple measures of model complexity, namely the
depth of the tree and its number of nodes. It is obvious that a decision tree is
the more understandable, the less tests have to be made in order to classify an
observation and the less tests it contains in general. This allows us to quantify
the degree of complexity reduction. Thirdly, these measures of complexity can
directly be optimized at the construction of the tree by cutting the tree off at
the maximal allowed depth and continuing with the pruning phase of the tree
induction until the maximum number of nodes is met.

Learning with Local Models 159

3.4 Expectation Maximization

The Expectation Maximization (EM) algorithm [2] is a general technique for
computing the maximum likelihood estimates of the parameters of a distribution
in the presence of hidden variables. This approach assumes that in addition to the
observed data X , there are hidden variables Z, such that the observations (xi)
could be modeled much better if the (zi) were known. The EM algorithm involves
two steps, the expectation step and the maximization step. The E-step computes
the values of the hidden variable zi, or a sufficient description thereof, given the
current estimate of the parameters. The M-step computes the parameters as
the maximum likelihood estimation given the observed data and the current
estimate of the hidden variables. Both steps are iterated until convergences or a
sufficient number of times. It can be shown that the EM algorithm converges to
a local optimum under some very general assumptions. The well-known k-means
clustering algorithm is a famous application of the expectation maximization
algorithm.

4 Algorithm

Following the earlier discussion on complexity and interpretability, we assume the
following problem setting: We are given data (xi, yi), i = 1 . . . n , two arbitrary
learners LGlob and LLoc, a density estimation algorithm and a real number τ ∈
]0, 1[. We want to find a model that is a combination of a global model learned
from LGlob and several local models learned from LLoc, such that the combined
model differs from the global model by at most τ . More formally, we define
dummy variable zi, i ∈ 1 . . . k for the single base models, and let the combined
model take the form

P (Y = 1|x) =
1

P (x)

k∑
j=1

P (Y = 1|x, z = j)P (x|z = j)P (z = j),

where

P (x) =
k∑

j=1

P (x|z = j)P (z = j)

with P (z = 1) > 1 − τ . We replaced the classifiers y = f(x) by estimators of
the conditional class probability P (Y = 1|x), which can be done by one of the
algorithms described in Section 3.2. Hence, by inspecting P (Y = 1|x, z = 1) (the
global model), the user learns how the combined model behaves on a fraction of
P (z = 1) > 1−τ of the cases, while inspecting the P (x|z = j) tell him where the
global model is applied and where not. Note that although at each point x the
combined prediction is a linear combination of the base models predictions, the
combined model is a nonlinear combination, as the P (x|z = j) are not linear.

The local model problem as it is defined here is a most general black-box
setting, as we neither assume knowledge about the internals of the learning and

160 Stefan Rüping

density estimation algorithms, nor about the interpretation of its models. In
particular, we do not assume that it is possible to assign weights to example,
modify the learners parameters or deduce the influence of specific training ex-
amples to the learners model. The only possibility for the overall algorithm to
interact with the given learners is to present the learners different training sets.
For the outputs, we only assume that the classifiers return a real value and that
the higher this value is, the more certain the classifier is that the observation
belongs to the positive class (in particular, this includes the case of a simple
binary classifier f(x) ∈ {−1, +1}). It was shown by Garczarek [7] that this is
sufficient to convert the classifiers output into an estimate of the conditional
class probability P (Y = 1|x).

Equation 4 contains two special cases for learning interpretable models as
extremes: For P (z = 1) = 1, we use only the global learner. This gives the user
full control over what the learner does, but only in a few lucky cases the most
understandable and the most accurate model will coincide. For P (z = 1) = 0, one
may use the most accurate model. The user may still inspect a model from the
global learner to understand the data, but he has no control over in which cases
the interpretable and the accurate will disagree, as he is missing the explicite
model P (x|z = i) of global and local regions.

Of course, there are many other methods for combining several learners and
one might ask, whether explicitely learning density models in the mixture ap-
proach as described in Equation 4 is not a more complex task than necessary. To
justify the mixture idea, let us compare it with two simpler approaches: First,
in Section 3.2 we described the idea of probabilitically scaling a classifier to
obtain an estimate of the conditional class probability P (y|x). Now, one might
think of using the most confident classifier for each example or to combine the
confidences of each classifier. But this idea is fallacious, because in general each
classifier can only be trusted to give good probability estimates over the region of
the input space it was trained and scaled on. For example, a linear classifier will
be the more confident the further away from the decision line the observations
lie, regardless of the position of its training examples. Hence, a local classifier
may either give much too optimistic results on non-local examples (when scaled
over the local examples only) or too pessimistic results on the local examples
(when scaled over many examples it was not trained on).

A second seemingly easier approach to learning local models would be to use
the local learner to predict whether the global learner is right or not. But this,
too, is not a good approach, because it makes the local learning problem much
more complex. The learner has not only to find structures in the data but also
the structure superimposed by the global model. Besides from complicating the
learning problem, this effectively prohibits to understand the overall prediction
by looking at the global model, as any prediction from the global model might
be negated by the second model. Hence, in this paper we use a combination of
models were each learner is trained to directly predict the true class.

Learning with Local Models 161

4.1 Learning the Combined Model

To find the combined model, we borrow ideas from two well-known learning
algorithms: classification with covering algorithms and EM clustering. Covering
algorithm find a logical rule which covers a part of the data, remove the examples
covered by this rule and then iteratively find further rules to cover the rest of
the data. Because of their iterative nature, they are well suited for the task of
finding local models, when one views the first rule as the global rule and the
following rules as local models [5] Learning by covering makes explicit use of the
fact that logical rules (e. g. “X1 = a∧X2 ≤ b ⇒ Y = 1”) make predictions for
only a part of the input space, such that it is clear which rule can be applied.
But this means that this idea cannot be directly applied to other base learners,
as in general, learners may make a prediction for every observation in the input
space. This is the reason why we need an additional density estimator to select
which model to use.

To find both the models and the clusters, on which each model should be
applied, we may proceed similar to EM clustering. EM clustering algorithms
iteratively find a cluster model, then for each example estimate the probability
of belonging to each of the clusters and re-estimate the clusters using these
probabilities as weights (i. e. an example with low probability of belonging to
some cluster will have little influence on the shape of this cluster). One might be
tempted to solve the local model problem by directly using clustering as a pre-
processing step, perhaps with a minimum size constraint on the first cluster, and
then find a different local model for each cluster. But this strategy may fail, as
clustering groups observations according to some similarity measure in X , while
we are interested in grouping observations together if they can be predicted by
the same model. If observations look very different in the input space, but can
be correctly predicted by the same simple model, there is no reason to treat
them differently as far as classification is concerned. This is the same situation
as described in Figure 1.

The reason for using an EM-like approach instead of a greedy approach as in
covering algorithms is that even if there is a simple structure behind parts of the
data that one learner could find, the learners model may be distorted by outliers
from the rest of the data. This problem can be seen in Figure 3 in Section 6,
where a linear hyperplane from a Support Vector Machine is distorted by a small
set of far away outliers. Once the local examples are known as such, it is very
easy to improve the model by removing this examples from the training set of the
classifier. Hence, it is important to re-evaluate the models once more information
about clusters and outliers is present. The Expectation Maximization procedure
allows to optimize both models in parallel by finding an optimal allocation from
examples to learners.

As we are interested in predicting x, i. e. in the conditional class distribution
P (y|x), in the final application of our model only x, but not z, is known, such
that we can make use of the mixture decomposition 4 of P (Y = 1|x) only if z
can be identified from x alone. Hence, we need the following assumption:

162 Stefan Rüping

Assumption: The distributions P (x|z = j) differ significantly for two different
j1, j2.

We will not define formally, what a significant difference of two probability dis-
tributions is, as this is not crucial for the algorithm presented here. What is
important is the intuition that the decomposition in k distributions will only
be of benefit if the distributions live in different part of the input space X . Ac-
cordingly, in this paper the terms j-th probability distribution Pj(x), j-th cluster
and j-th batch of data are used interchangeably. It is easy to check whether this
assumption holds by computing

P (Z = j|x) =
1

P (X)

∑
i

P (x|Z = j)P (Z = j)

for each x in the trainig set. If the assumption holds, the distribution of P (Z =
j|x) should follow an U-form, i. e. most examples should either clearly belong
to the j-th cluster (P (Z = j|x) ≈ 1) or clearly belong to a different cluster
(P (Z = j|x) ≈ 0).

In a similar way to P (z|x), we can also compute P (z|x, y) as

P (z|x, y) =
P (x, y, z)
P (x, y)

=
P (x, y, z)∑
z P (x, y, z)

with
P (x, y, z) = P (y|x, z)P (x|z)P (z).

Note that here we need to transform the conditional class estimate P (Y = 1|x, z)
given by the learner into the probability P (y|x, z) that the learner predicts the
correct class. Following the update of P (z|x, y), the default probability P (z) can
be re-estimated as P (z) = avgiP (zi|xi, yi).

Theoretically, we could now follow the algorithm for EM clustering algorithm
by using P (z|x, y) to assign examples to clusters and then use the learner and
density estimator on each cluster to learn an update of P (y|x, z) and P (x|z).
But it turns out that we need another intermediate step. The problem is the
allocation of examples to batches in the presence of noise. Imagine the case
when a large part of the error is due to random noise in y, independent of x,
e. g. by independently flipping any label with a fixed, small probability. When we
have an approximately correct global model, every non-flipped example will have
a high P (z|x, y), while every flipped example will have a very small probability
belonging the global model, as the model can be quite certain that the example
belongs to its cluster (high P (x)) and can be quite certain that its prediction is
correct on the average (high P (y|x)), but the prediction indeed is wrong (flipped
label). As a result, the examples with the lowest probability P (z|x, y) will most
likely be the errors of the global model and hence, the best local classifier to learn
from these examples is the negative of the original classifier. Now one would need
to know if the first classifier is wrong beforehand, because by the independence
of P (noise) and P (x), the observation x is completely uninformative to the
correctness of the first classifier. This is of course totally useless.

Learning with Local Models 163

To remedy this problem we double the EM-step of the algorithm: in the first
step, we allocate examples to batches with respect to P (z|x, y) (E-step 1) and
then learn a cluster model Pj(x) = P (x|z) only (M-step 1). In the second step,
we allocate examples to batches with respect to the learned P (z|x) (E-step 2)
and conclude with learning the classifier Pj(x) = P (y|x, z) from the new batches
(M-step 2). The trick is that now in the first M-step the density estimator only
sees the examples that this model can predict better than any other, while in
the second M-step the classifier does see all the examples it will be asked to
predict later. That is, the first step is to find a local pattern (deviation from the
combination of the rest of the models), and the second step is to learn a model
for exactly this pattern.

In each E-step, we take care to partition the examples into disjunct batches
for each learner by first choosing the examples for the batches with higher p(z)
and then choosing the examples for batches with lower p(z) from the rest. This
makes sure that different batches do not learn redundant models.

Alternatively, one could also give each learner the complete example set plus
weights based on P (z|x) or P (z|x, y), as in standard k-means. We do not use this
approach here, because we want to be able to ’plug-in’ as many different learners
as possible and there exist many types of learners that cannot deal with example
weights. A possible alternative to the approach defined here is to not partition
the example set but allow the batches to overlap themselves to a certain degree,
in order to account for undecisive batch probabilities.

4.2 Finally, the Algorithm

The final algorithm looks like this:

Local Model Algorithm:
1 input: data (xi,yi), #clusters k, #iterations i,

threshold tau
2 independently learn k models Pj(X,Y)
3 repeat i times
4 for all j estimate P(zi=j|xi,yi) from Pj
5 adjust P(zi=j|xi,yi) such that P(z=1) >= 1-tau
6 assign observations (xi) to batch j = argmax(P(zi=j|xi,yi))
7 for all j estimate P(zi=j|xi) from Pj
8 adjust P(zi=j|xi) such that P(z=1) >= 1-tau
9 assign examples (xi,yi) to batch j = argmax(P(zi=j|xi))
10 for all j learn model Pj(x,y) from batch j

If P (z = 1) < τ in step 5 or 8, we set P (z = 1) = τ and adjust all other P (z = j)
linearly.

As we do not use weights for the examples, but a hard threshold to decide
whether or not to include an example in a training set, we cannot give a con-
vergence result as in standard k-means or other EM algorithms (in k-means,
the models are continuous in the weights of the examples, but of course there is

164 Stefan Rüping

no continuity in including or excluding an example). Hence, the final model is
chosen as the model with minimal training error.

5 Related Work

There exists several approaches for combining multiple classifiers, for example
Voting, combination by order statistics [21], Meta-Level Learning [1], Stacking
[23], Cascade Generalization [6] and Boosting [3]. In Boosting, the combined
classifier is a linear combination of the base classifiers. The single classifiers and
their weights are learned iteratively. In each step, explicit information about the
error of the combined classifier so far is used and the classifier is added, that
reduces the error of the combined classifier the most in terms of a certain loss
function [4]. This idea is implemented by assigning a weight to each example.
After each step, the weights of the correctly classified examples are reduced an
the weights of the misclassified examples are increased. The weights can be seen
as a probability distribution over misclassifications.

Boosting is a most successful approach in terms of accuracy, but the in-
terpretability of its model is very limited. Following the terminology from this
paper, one might be tempted to call the first base model the global model and
the following models, that are learned with respect to the error distribution of
the combined model so far, local models. The problem is, that the following
models are not meaningful by themselves, but only with respect to all the mod-
els and their weights learned so far. If for example the i-th model shows that
a certain combination of attribute values is indicative of the positive class, this
does not mean that there is a correlation between these attribute values and the
positive class in the data, but only means that the combined classifier so far has
for some reason estimated too much influence of these attributes to the negative
class. Also, Boosting is a greedy combined learner, i. e. previous models are not
corrected once they have been learned, even if it turns out that they are wrong
in several parts.

With respect to interpretability, most other combined learners suffer from
the same problem, namely that to understand the model one has to understand
every single base model plus the way these models are combined. Even if the
base models are trivial, their combination can be quite complex. Boosting with
decision tree stumps is an example of that.

An understandable combination of classifiers needs some kind of orthogonal-
ity, such that the effect of one model is independent of the effect of the other
models, to ensure that the problem can be validly split up into smaller inde-
pendent parts. One way to ensure this orthogonality is to split up the input
space and find out which classifier works best in the different regions. Splitting
up the input space can be done either beforehand by clustering or inside the
learning procedure. Examples of this approach are [19] and [20]. Decision trees
also iteratively split up the input space, such that theoretically one could define
the first levels of the tree as a partition of the input space and the following
levels as separate classifiers for each partition (but this is probably stretching

Learning with Local Models 165

out the idea of local classifiers too far). More advanced, in [17] decision trees and
kernel density estimators have been combined to smoothen the posterior class
probabilities.

However, in most cases existing approaches are usually either not easily in-
terpretable or limited to a specific class of base learners. The goal of this paper
was to find an algorithm that keeps up interpretation and works with arbitrary
base classifiers.

6 Experiments

Let us first investigate the proposed local model algorithm on an artificial data
set. Figure 3 shows a 2-dimensional data set of 200 observations consisting of
two Gaussians, centered at (0, 0) and (2, 2), respectively. The first batch contains
95% of the observations with a standard deviation of σ = 1, while the second
batch is smaller both in term of number of observations (5%) and in standard
deviation (σ = 0.1). The positive examples are the examples from the first batch
with negative second coordinate plus the examples from the second batch. An
additional error of 5% in the labels was randomly added.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-2 -1 0 1 2

Positive
Negative

SVM

Fig. 3. Global model learned by a linear Support Vector Machine on a simple
data set.

The straight line in Figure 3 shows a linear SVM classifier learned over all
examples. One can see how the linear hyperplane is pulled into an ascending
slope by the positive examples from the second batch.

166 Stefan Rüping

-4

-3

-2

-1

 0

 1

 2

 3

 4

-2 -1 0 1 2

Positive
Negative

Global SVM
Local SVM

Fig. 4. Global model plus local model learned by the proposed algorithm with
linear SVMs as the base learner.

Figure 4 shows the result of the local model algorithm after one iteration.
In addition to the global linear classifier, a local linear classifier was added to
classify the examples from the second batch as positive. Notice that the global
classifier has gone back to the axis-parallel alignment that is optimal for the first
batch.

6.1 Complexity Measure Reduction

The effect of interpretability improvement is of course hard to measure. To obtain
quantifiable results, a C4.5 [13] decision tree learner is used in the following
experiments, such that interpretability can be reduced to meaning having a small
number of nodes or levels. To ensure an interpretable tree, the learning algorithm
was modified such that the maximum depth of the tree was cut off at 75% the
depth of the tree from the vanilla algorithm.

The experiments were conducted on 7 data sets, including 5 data sets from
the UCI Repository [11] (breast, covtype, diabetes, ionosphere, liver) and 2 other
real-world data sets: a business cycle analysis problem (business) and intensive
care patient monitoring data (medicine). Prior to learning, nominal attributes
were binarised and the attributes were scaled to expectancy 0 and variance 1.
Multi-class-problems were converted to two-class problems by arbitrarily select-
ing two of the classes (covtype) or combining smaller classes into a single class
(business, medicine). For the covtype data set, a 1% sample was drawn. The
following table sums up the description of the data sets:

Learning with Local Models 167

Name Size Dimension
breast 683 10
covtype 4951 48
diabetes 768 8
ionosphere 351 34
liver 345 6
business 157 13
medicine 6610 18

In addition to depth and number of nodes of the decision tree, the error of
the combined classifier C-error, the error of the global decision tree classifier
G-error and the disagreement between global and combined classifier disagree,
i. e. the fraction of examples predicted differently by both classifiers have been
recorded. All numbers reported are results of a 5-fold cross-validation.

The Support Vector Machine was used as local classifier. The type of kernel
function (linear or radial basis) and the kernel parameters were selected before-
hand by optimization over all examples. The C parameter was set at a default
value. For density estimation, k-medoids, a robust version of k-means, was used.

In all experiments, one local model was learned and a fraction of τ = 0.3
examples were allowed for this local model. 3 EM iterations were performed.
The following table sums up the performance of the local model algorithm:

Data Iteration Depth Nodes C-Error G-Error Disagree
breast 1 5.0 17.4 0.042 0.042 0.0

2 2.8 10.6 0.236 0.074 0.226
3 1.2 3.4 0.029 0.067 0.055

covtype 1 22.4 528.2 0.228 0.229 0.001
2 15.6 332.6 0.227 0.227 0.054
3 15.6 366.6 0.227 0.239 0.058

diabetes 1 6.8 24.6 0.266 0.276 0.016
2 4.0 14.6 0.242 0.250 0.251
3 4.0 15.8 0.247 0.251 0.030

ionosphere 1 7.0 21.4 0.096 0.096 0.0
2 4.0 9.4 0.116 0.119 0.054
3 4.0 10.2 0.099 0.122 0.034

liver 1 9.8 49.0 0.313 0.318 0.005
2 5.2 20.2 0.368 0.339 0.220
3 6.0 24.6 0.350 0.347 0.205

business 1 6.4 20.2 0.223 0.223 0.0
2 3.6 10.2 0.210 0.255 0.094
3 3.6 12.2 0.216 0.222 0.057

medicine 1 19.2 389.4 0.202 0.204 0.017
2 13.6 245.4 0.206 0.215 0.073
3 13.6 239.8 0.211 0.219 0.104

168 Stefan Rüping

It can be seen that the complexity of the tree classifier is reduced dramati-
cally compared to the tree from the usual C4.5 algorithm (the first step is done
without cutting off the tree, hence the size of the vanilla C4.5 tree can be seen
in iteration 1). However, this complexity reduction does not decrease the classi-
fication performance, with the exception of the liver data set. On the average, in
the third iteration the error is reduced by 4% while the size of the decision tree
is reduced by 46%. Global and combined classifier differ in 7% of the cases. This
shows, that the local model algorithm can effectively find a much less complex
approximation to the optimal model.

7 Conclusion and Future Work

Local models are the extension of local patterns to the supervised learning case.
They provide a good way to improve the interpretability of a classifier by re-
stricting the classifier to the essential parts of the model and leaving out patterns
that it hardly can approximate. In this paper, a local model algorithm was pre-
sented that learns a global classifier plus local models to reduce complexity of the
global model, ensure the prediction quality of the combined model and provide
guarantees that combined and global model will differ only up to a user-specified
degree. This allows the user to restrict his attention to the global model and still
get valid information about the high-quality combined model.

Another important aspect of this approach is the interpretability of the local
models. In applications global rules often express only trivial knowledge about
the data, that the user is already aware of, while the significant exceptions of
these rules are highly informative. This aspect of local models will be dealt with
in future work.

Another open problem concerns the runtime of the algorithm. Each iteration
requires to learn a density and a classification model for both the global learner
and the local learners. While the local models hopefully do not pose a problem,
as only a small part of the data is concerned, the global models require to deal
with possibly very large data sets. Theoretically, learning with local models could
alleviate this problem, as it allows room for errors of the global model, which
can be dealt with by local models. This would allow to use sampling or a faster,
less accurate learner for the bulk of the data. It remains to be investigated how
well this works in practice.

Acknowledgments

Many thanks to Stefan Wrobel for the very helpful comments to this paper. The
financial support of the Deutsche Forschungsgemeinschaft (Collaborative Re-
search Center SFB 475, ”Reduction of Complexity for Multivariate Data Struc-
tures”) is gratefully acknowledged.

Learning with Local Models 169

References

1. Philip K. Chan and Salvatore Stolfo. Experiments in multistrategy learning by
meta-learning. In Proceedings of the second international conference on informa-
tionand knowledge management, pages 314–323, Washington, DC, 1993.

2. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society Ser. B,
39:1–38, 1977.

3. Y Freund and R.E Schapire. Game theory, on-line prediction and boosting. In
Proceedings of the 9th Annual Conference on Computational Learnin g Theory,
pages 325–332, 1996.

4. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-
sion: A statistical view of boosting. Technical report, Departement of Statistics,
Stanford University, Stanford, California 94305, July, 23 1998.

5. Johannes Fürnkranz. From local to global patterns: Evaluation issues in rule learn-
ing algorithms. In Katharina Morik, Jean-Francois Boulicaut, and Arno Siebes,
editors, Detecting Local Patterns. Springer, 2005.

6. João Gama and Pavel Brazdil. Cascade generalization. Machine Learning,
41(3):315–343, 2000.

7. Ursula Garczarek. Classification Rules in Standardized Partition Spaces. PhD
thesis, Universität Dortmund, 2002.

8. Isabelle Guyon, Nada Matic, and Vladimir Vapnik. Discovering informative
patterns and data cleaning. In Usama M. Fayyad, Gregory Piatetsky-Shapiro,
Padhraic Smyth, and Ramasamy Uthurusamy, editors, Advances in Knowledge Dis-
covery and Data Mining, chapter 2, pages 181–204. AAAI Press/The MIT Press,
Menlo Park, California, 1996.

9. David Hand. Pattern detection and discovery. In David Hand, Niall Adams, and
Richard Bolton, editors, Pattern Detection and Discovery. Springer, 2002.

10. G. Miller. The magical number seven, plus or minus two: Some limits to our
capacity for processing information. Psychol Rev, 63:81 – 97, 1956.

11. P. M. Murphy and D. W. Aha. UCI repository of machine learning databases,
1994.

12. John Platt. Advances in Large Margin Classifiers, chapter Probabilistic Outputs
for Support Vector Machines and Comparisons to Regularized Likelihood Methods.
MIT Press, 1999.

13. John Ross Quinlan. C4.5: Programs for Machine Learning. Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

14. R.J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

15. P.J. Rousseeuw. Least median of squares regression. Journal of the American
Statistical Association, 79:871–880, 1984.

16. Stefan Rüping. A simple method for estimating conditional probabilities in SVMs.
In A. Abecker, S. Bickel, U. Brefeld, I. Drost, N. Henze, O. Herden, M. Minor,
T. Scheffer, L. Stojanovic, and S. Weibelzahl, editors, LWA 2004 - Lernen - Wis-
sensentdeckung - Adaptivität. Humboldt-Universität Berlin, 2004.

17. Padhraic Smyth, Alexander Gray, and Usama M. Fayyad. Retrofitting decision
tree classifiers using kernel density estimation. In International Conference on
Machine Learning, pages 506–514, 1995.

18. Edgar Sommer. Theory Restructering: A Perspective on Design & Maintenance of
Knowledge Based Systems. PhD thesis, University of Dortmund, 1996.

170 Stefan Rüping

19. L Todorovski and S. Dzeroski. Combining multiple models with meta decision
trees. In Proceedings of the Fourth European Conference on Principles of Data
Mining and Knowledge Discovery, pages 54–64. Springer, 2000.

20. Ljupco Todorovski and Saso Dzeroski. Experiments in meta-level learning with
ILP. In J. M. Zytkow and J. Rauch, editors, Proceedings of third European Con-
ference on Principles of data mining and knowledge discovery (PKDD-99), volume
1704, pages 98–106. Springer, 1999.

21. Kagan Tumer and Joydeep Ghosh. Order statistics combiners for neural classifiers.
In Proceedings of the World Congress on Neural Networks, 1995.

22. V. Vapnik. Statistical Learning Theory. Wiley, Chichester, GB, 1998.
23. D. Wolpert. Stacked generalizations. Neural Networks, 5:241–259, 1992.

Knowledge-Based Sampling for Subgroup

Discovery

Martin Scholz

Artificial Intelligence Group
Department of Computer Science
University of Dortmund, Germany
scholz@ls8.cs.uni-dortmund.de

Abstract. Subgroup discovery aims at finding interesting subsets of a
classified example set that deviates from the overall distribution. The
search is guided by a so-called utility function, trading the size of subsets
(coverage) against their statistical unusualness. By choosing the utility
function accordingly, subgroup discovery is well suited to find interest-
ing rules with much smaller coverage and bias than possible with stan-
dard classifier induction algorithms. Smaller subsets can be considered
local patterns, but this work uses yet another definition: According to
this definition global patterns consist of all patterns reflecting the prior
knowledge available to a learner, including all previously found patterns.
All further unexpected regularities in the data are referred to as local
patterns. To address local pattern mining in this scenario, an exten-
sion of subgroup discovery by the knowledge-based sampling approach
to iterative model refinement is presented. It is a general, cheap way of
incorporating prior probabilistic knowledge in arbitrary form into Data
Mining algorithms addressing supervised learning tasks.

1 Introduction

The discipline of Knowledge Discovery in Databases (KDD) is about finding
useful and novel patterns, hidden in huge amounts of real-world data. A common
problem is that the applied Data Mining techniques primarily find “obvious”
patterns which are already known to domain experts. In this work we distinguish
between global and local patterns, paying special attention to mining the local
ones.

The notion of patterns is central to KDD. This work assumes that for a given
target variable the absence of any pattern is equivalent to its independence of
all the other variables. If prior knowledge is available then the absence of further
patterns means that the prior knowledge models the distribution of the target
variable precisely. In turn, a pattern is defined as a regular deviation from the
independence assumption or given prior model, respectively. Thus, it shows as a
correlation between the given target attribute and the other variables that has
not been reported yet.

As a first idea the reader might want to think of global patterns as those
discovered easily, e.g. because of having a high correlation to the target attribute

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 171–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

172 Martin Scholz

in a densely populated subset of the instance space. Whether these patterns
reflect prior domain knowledge or are the result of an earlier application of a
Data Mining technique, in any case we might be interested in finding further
patterns. From a technical point of view, the presence of some patterns may
increase necessary efforts to observe others. Given a sample of limited size a
less frequent pattern showing little effect on the target attribute may easily be
considered to be part of another pattern. Due to a lack of significance it may also
be hard to distinguish such patterns from random noise. To this end a specific
sampling technique is proposed, paying special attention to patterns of lower
frequency in subsequent Data Mining iterations.

Defining local patterns is possible based on the learner’s prior knowledge:
deviation from expectation indicates the presence of patterns not yet discovered.
These patterns are referred to as local patterns. For simplicity this work confines
itself to probabilistic rules as the representation language for patterns. Guiding
the discovery of patterns by unexpectedness is close to the idea of subgroup
discovery, a learning task discussed in section 3 after some necessary definitions
are given in section 2. As the main contribution of this work a generic sampling
technique to incorporate prior knowledge into subgroup discovery is presented
in section 4 and empirically evaluated in section 5.

2 Basic Definitions

This section embeds the problem of mining local patterns into a formal Data
Mining framework. The notion of a pattern as used in this work is in-line with the
definition given in [8]: A pattern is characterised as a subset of the instance space
with an anomalously high local density of data points. Local patterns are defined
in terms of a (global) background model. Probabilistic rules, for simplicity always
predicting the value of a boolean target attribute, are considered to be our target
representation language for local patterns. A definition of this formalism is given
in subsection 2.2 after some more basic definitions.

2.1 Instance Space and Distribution

The two learning tasks discussed in this paper are subgroup discovery and clas-
sifier induction. Both tasks are supervised, so the learning step is performed
based on a sample of classified examples. Examples are defined as elements of
an instance space X. Usually the instance space X = A1 × A2 × . . . × Ak is the
Cartesian product of a fixed set of nominal and/or numerical attributes. A set
of examples E ⊂ X can be considered to be the extension of a single table of a
relational database. To simplify formal aspects, X is assumed to be finite in this
work. All results are easily generalised to the case of continuous domains.

Examples are assumed to be sampled i.i.d with respect to a distribution
D : X → [0, 1]. The probability to observe an instance x ∈ X under D is denoted
as Px∼D(x). The probability to observe an instance from a subset W ⊆ X is

Knowledge-Based Sampling for Subgroup Discovery 173

denoted as PD(W). If the underlying distribution is clear from the context we
omit the subscripts.

Each example is assigned a label from the set Y of all possible labels by
the target function C : X → Y. We assume C to be fixed but unknown to the
learner, whose task is to approximate it in a specified way. This work considers
only supervised learning with a boolean target attribute Y = {0, 1}.

2.2 Probabilistic Rules for Knowledge Representation

Encoding prior knowledge1 is often done using any form of rules. For subgroup
discovery Horn logic rules are the main representation language.

Definition 1. A Horn logic rule consists of a body A, which is a conjunction of
atoms over A1, . . . , Ak, and a head B, predicting a value for the target attribute.
It is notated as A → B. If the body evaluates to true the rule is said to be
applicable, if the head evaluates to true, also, it is called correct.

More generally a rule can be considered as a function h : X → Y, assigning a
prediction to each x ∈ X.

For now we assume any form of prior knowledge to be represented by rules of
this form. In subsection 4.3 we will see that the presented approach can easily be
extended to incorporate any form of prior knowledge predicting the conditional
distribution of the target variable.
Assuming Y = {0, 1}, the following abbreviations are used:

h := {x ∈ X | h(x) = 1} , h := X \ h

Y+ := {x ∈ X | C(x) = 1} , Y− := X \ Y+

Using this notation, the Horn logic rules predicting a boolean target are of the
form (h → Y+) and (h → Y−). Unlike for any strictly logical interpretation,
rules are not expected to match the data exactly. Often it is sufficient if they
point to regularities in the data. The intended semantics of a probabilistic rule
is that the conditional probability P (Y+ | h) (or P (Y− | h)) is higher than the
class prior P (Y+) (or P (Y−)). Probabilistic rules are often annotated by their
corresponding conditional probabilities:

h → Y+ [0.8] :⇔ Px∼D(C(x) = 1 | h(x) = 1) = 0.8

2.3 Performance Metrics

As a general task in supervised learning we want to estimate conditional proba-
bilities of target attributes. Different performance metrics help to evaluate how
useful and interesting single rules are. For the notion of interestingness different
1 The term “prior knowledge” will be preferred to “background knowledge”, because

the latter is associated with precise knowledge for inference, while prior knowledge
suggests a more probabilistic view.

174 Martin Scholz

formalisations have been proposed in the literature (e.g.[21]). In this work inter-
estingness is considered equal to unexpectedness. This subsection collects some
important metrics for rule selection.

The goal when training classifiers is to select a predictive model that separates
positive and negative examples accurately.

Definition 2. For a rule (A → B) the accuracy is defined as

Acc(A → B) := P (A ∩ B) + P (A ∩ B)

Definition 3. The precision of a rule reflects the conditional probability that it
is correct, given that it is applicable:

Prec(A → B) := P (B | A)

Subgroup discovery focuses on rules covering subsets that – compared to the
overall distribution – are biased in the data. The following metric has been
used to measure interest in the domain of frequent itemset mining [3]. In the
supervised context it measures the change in the target attribute’s frequency for
the subset covered by a rule.

Definition 4. For any rule (A → B) the Lift is defined as

Lift(A → B) :=
P (A ∩ B)
P (A)P (B)

=
P (B | A)

P (B)
=

Prec(A → B)
P (B)

The Lift of a rule captures the value of “knowing” the prediction for estimating
the probability of the target attribute. Lift(A → B) = 1 indicates that A and
B are independent events. With Lift(A → B) > 1 the conditional probability
of B given A increases, with Lift(A → B) < 1 it decreases.

During subgroup discovery rules are evaluated by a utility function. A pop-
ular function is the following one, e.g. available in EXPLORA [10]:

Definition 5. The weighted relative accuracy (WRAcc) of a rule (A → B)
multiplies coverage P (A) and bias P (B | A) − P (B):

WRAcc(A → B) := P (A) · (P (B | A) − P (B))

The use of WRAcc as a measure for rule interestingness has been motivated
elaborately in [13]. It is similar to the binomial test function, thus favours sig-
nificant rules, but puts more emphasis on coverage [10]. Many other functions
have been suggested in the literature [24,10], basically putting more emphasis
on either coverage or bias.

3 Subgroup Discovery

Subgroup discovery aims at finding interesting subsets of the instance space that
deviate from the overall distribution. The search is guided by a utility function

Knowledge-Based Sampling for Subgroup Discovery 175

that allows to find interesting rules with much smaller coverage and bias than
possible with standard classifier induction algorithms. Subsection 3.1 briefly de-
scribes related work in subgroup discovery. How interesting rules interact, how
to recognise redundant rules, and how to build single predictors from rulesets is
discussed in 3.2. In subsection 3.3 incorporation of prior knowledge as a means
to improve utility and diversity of the discovered rulesets is motivated. Sub-
section 3.4 shows a generic way of addressing subgroup discovery tasks using
classifier induction algorithms.

3.1 Existing Approaches

The goal of subgroup discovery is to find interesting and novel patterns in
datasets. Utility functions formalise a trade-off between the size of the sub-
group and the unusualness in terms of a target attribute’s observed frequency.
There are two different strategies of searching for interesting rules: exhaustive
and heuristic search.

MIDOS [24] and EXPLORA [10] tackle subgroup discovery by exhaustively
evaluating the set of rule candidates. The set of rules are ordered by generality,
which allows to prune large parts of the search space. The advantage of this
strategy is that it allows to find the n best subgroups reliably. For the special
case of exception rules similar exhaustive search strategies exists [22]. Finding
subgroups on subsamples of the original data is a straightforward method to
speed up the search process. As shown in [19,20] most of the utility functions
commonly used for subgroup discovery are well suited to be combined with adap-
tive sampling. This sampling technique reads examples sequentially, continuously
updating upper bounds for the sample errors, based on the data read so far. In
this way, the required sample size allowing to give a probabilistic guarantee of
not missing any of the n best subgroups can be reduced.

Heuristic search strategies are fast, but do not come with any guarantee to
find the most interesting patterns. One recent example implementing a heuristic
search is a variant of CN2. By adapting its evaluation measure for rule candidates
to WRAcc the well known CN2 classifier has been turned into CN2-SD [12]. As
a second modification the iterative cover approach of CN2 has been replaced by
a heuristic weighting scheme. Example weights are either changed by a constant
factor or by an additive term each time the example has been covered by a rule.
In section 4 a new generic weighting scheme is proposed that allows to overcome
some shortcomings of CN2-SD.

For pruning rulesets ROC analysis was suggested in [12]. According to the
false positive and false negative rates all rules are plotted in ROC space [4].
Only rules lying on the convex hull are deemed relevant and may be turned into
a single classifier by weighted majority vote. A major drawback of this filter
is that it systematically discards one of two rules covering disjoint subsets and
having almost the same performance. As soon as one of these rules is superior
in both true positive and false negative rates, the other rule is considered to
be redundant. This is not desirable in descriptive scenarios, as the only rule
covering a specific subset of the instance space should not easily be discarded,

176 Martin Scholz

nor for predictive settings, as diversity of base classifiers is crucial for reaching
high predictive accuracy [2].

3.2 Combining Rules

There are different methods to combine a set of rules predicting the conditional
probability of a target class. The approach put forward in this work is useful for
descriptive and predictive settings, and it can be used to combine arbitrary pre-
dictors, especially rules represented in Horn logic. If the prediction of each rule
is used to define a new attribute, then predictions can be combined by means
of classifier induction techniques. The underlying assumption of Näıve Bayes [9]
is that all attributes are conditionally independent given the class. These classi-
fiers work surprisingly well in practice, often even if the underlying assumption
is known to be violated. When mining rules iteratively, using the sampling tech-
nique proposed in section 4, the conditional independence assumption is not as
unrealistic as one might expect. The reason is that all correlations “reported”
by previously found patterns are “removed” from subsequently constructed sam-
ples.

Let {hi : X → Y | 1 ≤ i ≤ n} denote a set of rules. Then for any given
example x ∈ X, labels y1, . . . , yn ∈ Y, and h1(x) = y1, . . . , hn(x) = yn, the
Näıve Bayes classifier estimates

P (C(x) = y | h1(x) = y1, . . . hn(x) = yn)

=
P (h1(x) = y1, . . . , hn(x) = yn | C(x) = y) · P (C(x) = y)

P (h1(x) = y1, . . . , hn(x) = yn)

≈ P (C(x) = y)
P (h1(x) = y1, . . . hn(x) = yn)

∏
1≤i≤n

P (hi(x) = y | C(x) = y)

=
P (C(x) = y)

∏
i P (hi(x) = yi)

P (h1(x) = y1, . . . , hn(x) = yn)

∏
1≤i≤n

P (C(x) = y | hi(x) = y)
P (C(x) = y)

=
P (C(x) = y)

∏
i P (hi(x) = yi)

P (h1(x) = y1, . . . , hn(x) = yn)

∏
1≤i≤n

Lift((hi(x) = yi) → (C(x) = y))

for each class y ∈ Y. Especially for boolean Y it is easier to consider the ratios

α(x) :=
P (Y+ | h1(x) = y1, . . . , hn(x) = yn)
P (Y− | h1(x) = y1, . . . , hn(x) = yn)

=
P (Y+)
P (Y−)

∏
1≤i≤n

Lift((hi(x) = yi) → Y+)
Lift((hi(x) = yi) → Y−)

, (1)

as most of the terms cancel out, but we can still recalculate

P (Y+ | h1(x) = y1, . . . , hn(x) = yn) =
α(x)

1 + α(x)

Knowledge-Based Sampling for Subgroup Discovery 177

based on formula (1). So following the conditional independence assumption it
is possible to combine rules to predict class probabilities, just knowing their Lift
and the class priors. It is not necessary to restrict rules to the case in which the
body evaluates to true. Please note that

Lift(h → Y+) > 1 ⇒ Lift(h → Y−) > 1,

but the precisions of both rules may differ. So each rule h → Y+/− should rather
be considered to partition the instance space into h and h, making a prediction
for both subsets. As a consequence any two rules overlap. Thus, for any known
degree of overlap between a rule R1 that is part of the prior knowledge and a rule
candidate R2 under consideration, we have an expectation for Lift(R1) based on
Lift(R2). This expectation reflects the assumption that R2 does not introduce a
Lift of its own, but simply shares a biased subset with R1. If this assumption is
met, then the rule candidate is redundant and should be ranked low. The Lift
of each rule can be expressed relative to prior knowledge, e.g. of preceding rules.
The following equation illustrates this idea for the simplified case of two rules
and the subset h1 ∩ h2 ⊂ X:

Lift((h1, h2) → Y+) =
P (h1, h2 | Y+)

P (h1, h2)
=

P (h1 | Y+) · P (h2 | h1, Y+)
P (h1) · P (h2 | h1)

= Lift(h1 → Y+) · Lift(h2 → (h1, Y+))
Lift(h2 → h1)︸ ︷︷ ︸

=:Lift(h2→Y+|h1)

The term Lift(h2 → Y+ | h1) can be regarded as the relative Lift of the rule
h2 → Y+ with respect to prior knowledge. It replaces Lift(h2 → Y+) when
estimating α(x) in formula (1) given h1 → Y+. Applying the sampling technique
introduced in section 4, rules with high relative performance are favoured. This
usually results in rulesets with low redundancy and high diversity.

3.3 Iterative Subgroup Discovery

A drawback of classical subgroup discovery lies in a lack of expressiveness. Es-
pecially interesting exceptions to rules are hard to be detected using standard
techniques, for mainly two reasons. First of all, due to the syntactical structure
imposed by Horn logic it is often hard to exclude exceptions from rules, although
this would improve the score assigned by the utility function. The syntactical
bias is important, however, because we want the results to be understandable,
and because it is the main reason for diversity within the n best subgroups. With-
out any syntactical restrictions the second best subgroup would usually be the
best one after adding or removing a single example. The syntactical bias might
not be sufficient to avoid sets of similar rules. Redundancy filters are a com-
mon technique to overcome this problem. Overlapping patterns like exceptions
to rules are not found reliably that way. Exceptions could still be represented

178 Martin Scholz

by separate rules. This fails for the second reason, namely that utility functions
evaluate rules globally. Interactions between rules do not affect their scores.

Formalised prior knowledge like previously found patterns could help to refine
existing utility measures. Two different approaches to exploit prior knowledge in
the scope of subgroup discovery have been suggested so far. The first one is to
prune rules violating a redundancy constraint [10]. This is possible during search,
or as a post-processing step to present only the most interesting rules. With the
ILP system RSD [11] another way of incorporating background knowledge has
been proposed. It uses background knowledge to propositionalise relational data.
For the learning step itself CN2-SD is used.

One of the advantages of the approach presented here is that it allows to turn
any algorithm for training classifiers in the presence of noise into one for subgroup
discovery with utility function WRAcc that can exploit prior knowledge. The
next subsection shows a generic way to transform subgroup discovery tasks into
classifier induction tasks, before a generic way to incorporate prior knowledge
into supervised Data Mining is introduced in section 4.

3.4 Subgroup Discovery by Classifier Induction

This subsection briefly discusses the relation between subgroup discovery with
utility function WRAcc and the task of classifier induction.

The goal of classifier induction is to select a predictive model that separates
positive and negative examples with high predictive accuracy. Many algorithms
and implementation exists for this purpose [16,23], basically differing in the set
of models (hypothesis space H) and search strategies. Subgroup discovery is also
a supervised learning task. Examples are classified with respect to a “property
of interest”. The overall goal is to find understandable and interesting rules,
which is hard to be formalised. Thus, the process of model selection is guided
by a utility function. In the following definition subgroup discovery is reduced
to finding a single rule, only.

Definition 6. Let H denote the set of models (rules) valid as output and D
denote a distribution function over X. The task of classifier induction is to find

h∗ := maxargh∈H Acc(h).

For a given utility function q : H → IR the task of subgroup discovery is to find

h∗ := maxargh∈H q(h).

For boolean target attributes common classifier induction algorithms do not
benefit from finding rules with a precision below 50%. In contrast, for subgroup
discovery it is sufficient if a class is observed with a frequency that is significantly
higher than in the overall population. In cases of skewed class distributions the
frequency in the covered subset might still be far below 50% for the most inter-
esting rules. Choosing the utility function WRAcc we can transform subgroup
discovery as defined above into classifier induction by a simple sampling tech-
nique to overcome imbalanced class distributions.

Knowledge-Based Sampling for Subgroup Discovery 179

Definition 7. For D : X → [0, 1], C : X → Y let the stratified random sample
distribution D′ of D (and C) be defined by

Px∼D′(x) :=
Px∼D(x)

|Y | · Pz∼D(C(z) = C(x))
= PD(x)/

{
2PD(Y+), for C(x) = 1
2PD(Y−), for C(x) = 0

D′ is defined by rescaling D so that the class priors are equal.

Theorem 1. For every rule h → Y+ the following equalities hold if D′ is the
stratified random sample distribution of D:

AccD′(h → Y+) = 2WRAccD′(h → Y+) − 1/2

= WRAccD(h → Y+) · 1
2PD(Y+) · PD(Y−)

− 1/2︸ ︷︷ ︸
irrelevant for ranking rules

Theorem 1 indicates that subgroup discovery tasks with utility function WRAcc
can as well be solved by rule induction algorithms optimising predictive accuracy
after a step of stratified resampling. A proof is given in the appendix. Further
interesting relations between performance metrics are proven in [7].

4 Knowledge-Based Sampling

Before introducing techniques for sampling with respect to prior knowledge the
task is formalised by a set of constraints.

4.1 Constraints for Resampling

After a first rough analysis has discovered global patterns we want to prepare a
second iteration of Data Mining to find local patterns. The proposed idea is to
construct samples that do not show the biases underlying previously discovered
patterns, while taking care that all the remaining patterns remain intact.

Practically, for a given rule R : h → Y+ this means to consider a new dis-
tribution D′, as close to the original function D as possible. This is formalised
by the following set of constraints. First of all, we want to remove the bias
corresponding to R. In other words we want h and Y+ to be independent:

PD′(Y+ | h) = PD′(Y+) (2)

Next, we do not want the priors of h and Y+ to change:

PD′(h) = PD(h) (3)
PD′(Y+) = PD(Y+) (4)

180 Martin Scholz

Finally, within each partition sharing the same class and prediction of R the new
distribution is defined proportionally to the initial one:

PD′(x | h ∩ Y+) = PD(x | h ∩ Y+) (5)
PD′(x | h ∩ Y−) = PD(x | h ∩ Y−) (6)
PD′(x | h ∩ Y+) = PD(x | h ∩ Y+) (7)
PD′(x | h ∩ Y−) = PD(x | h ∩ Y−) (8)

Given a database and a global pattern R we can apply any Data Mining tech-
nique after sampling with respect to D′. This might ease the detection of further
patterns. An advantage of mining the resampled data rather than a dataset with-
out the covered examples shows, if there are further patterns within the covered
subset. These patterns can still be observed after resampling, just rescaled pro-
portionally. This helps to find exceptions to successful rules, as motivated in
subsection 3.3, or patterns overlapping in some other way.

Please note, that a subgroup pattern showing in the new sample may be
interesting relative to the prior knowledge, only. Let

P (Y+ | A) = P (Y+) = 0.5 for a rule A → Y+.

Y is distributed in A just as in the overall population, so this rule would not be
deemed interesting by any reasonable utility function. Now assume that in the
prior knowledge there is a statement about a superset of A:

B → Y+ [0.9] with A ⊂ B.

This rule predicts a higher conditional probability of Y+ given B. In this context
the rule (A → Y+) becomes interesting as an exception to the prior knowledge,
because we would rather expect P (Y+ | A) = P (Y+ | B). The reason is that the
prediction for B ⊂ X is more specific than the general class priors. In general
switching from the initial distribution to the resampled data is a step of applying
prior knowledge by means of sampling. This step allows to find overlapping and
nested patterns sequentially.

4.2 Constructing a New Distribution Function

In subsection 4.1 the idea of sampling with respect to an altered distribution
function has been presented. Intuitively, prior knowledge and known patterns
are “filtered out”. This subsection proves that the proposed constraints (2) to
(8) induce a unique target distribution.

Definition 8. The lift of an example x ∈ X for a rule (h → Y+) is defined as

Lift(h → Y+, x) :=

⎧⎪⎪⎨⎪⎪⎩
Lift(h → Y+), for x ∈ h ∩ Y+

Lift(h → Y−), for x ∈ h ∩ Y−
Lift(h → Y+), for x ∈ h ∩ Y+

Lift(h → Y−), for x ∈ h ∩ Y−

Knowledge-Based Sampling for Subgroup Discovery 181

Theorem 2. For any initial distribution D and given rule R the probability
distribution D′ is induced uniquely by the constraints (2) to (8) as follows:

PD′(x) := PD(x) · (LiftD(R, x))−1

Proof. The proof is exemplarily shown for the partition (h ∩ Y+), in which the
rule under consideration is both applicable and correct. D′ can be rewritten in
terms of D and Lift(R, x), assuming that the constraints hold:

(∀x ∈ h ∩ Y+) : PD′(x) = PD′(x | h ∩ Y+) · PD′(h ∩ Y+)
= PD(x | h ∩ Y+) · PD′(h) · PD′(Y+)

=
PD(x)

PD(h ∩ Y+)
· PD(h) · PD(Y+)

= PD(x) · (LiftD(h → Y+))−1

The other three partitions can be rewritten analogously. On the other hand, it
can easily be validated that D′ as defined by theorem 2 is in fact a distribution
satisfying constraints (2) to (8):

PD′(h ∩ Y+) = PD(h ∩ Y+) · (LiftD(R, x))−1 = PD(h) · PD(Y+)

and analogously for the other partitions. This directly implies constraints (2)
to (4) by marginalising out. Constraints (5) to (8) are met, because for all four
partitions D′ is defined proportionally to D. This implies that the conditional
probabilities given the partitions are equivalent.

4.3 Weighting Examples Using Prior Knowledge

In the last subsection it was discussed how to alter an initial distribution in the
presence of prior knowledge. The goal is to construct samples not reflecting pre-
viously found patterns anymore. This idea stems from boosting classifiers, which
was also first introduced in terms of altering an initial distribution function and
a corresponding sampling technique [17]. The idea of boosting is to repeatedly
apply a “weak” base learner and to combine the predictions. The probabilities
of examples are adjusted in such a way that in later iterations the weak learner
has to focus on the “hard” examples not yet covered sufficiently by the ensemble
of base classifiers.

As a general alternative to resampling it is possible to assign weights to
examples, reflecting a change in the underlying distribution. This method is
common in boosting literature to avoid resampling [5,6,18]. It can be understood
in terms of importance sampling [14]: The example set is assumed to be drawn
independently from an initial distribution D. Then each example x is assigned
the weight D′(x)/D(x) rather than sampling directly with respect to D′, which
may be infeasible.

182 Martin Scholz

For subgroup discovery the use of weighted examples may be less appropriate,
as even uniformly distributed subsets may be represented as a single example
with high weight. On the other hand, for given example weights resampling can
easily be performed by a Monte Carlo technique called rejection sampling [14]. A
straight-forward implementation of this technique has successfully been applied
to cost-sensitive learning [25], which is very similar from a technical point of
view. In this subsection a knowledge-based weighting scheme is introduced. It
can replace resampling if all subsequently applied algorithms are capable of using
example weights, and if it meets the requirements of the learning task. In other
cases it can still be used as a basis for rejection sampling.

Theorem 2 defines a new distribution to sample from, given a single rule R as
prior knowledge. The following strategy for weighting examples is more general.
First of all the number of classes |Y| is not restricted to two. As a second
generalisation the prior knowledge θ may be of arbitrary form. It is assumed to
be associated to a function

P̂ (x, y, θ) = P̂ (C(x) = y | x, θ) ≈ P (C(x) = y | x)

estimating probabilities for each 〈x, y〉 ∈ X × Y. Assuming the class priors
P (C(x) = y) to be known for each y ∈ Y and applying the definition of the Lift
the corresponding estimated Lift can easily be computed as

L̂ift(x, θ) :=
P̂ (x, C(x), θ)

Pz∼D(C(z) = C(x))

Given a procedure for sampling examples x ∼ D independently, the following
distribution generalising theorem 2 can be used for weighting each example:

PD′(x) := PD(x) · (L̂ift(x, θ))−1 (9)

To remove prior probabilistic knowledge from a data stream applying formula (9)
it is sufficient to assign each example x from the stream a weight of L̂ift(x, θ)−1,
as the factor D(x) is already accounted for by sampling with respect to D.

5 Experiments

The proposed idea of subgroup discovery utilising all forms of previously dis-
covered patterns has been evaluated on three datasets from the UCI Machine
Learning Library [1] and a sample of the KDD Cup 2004 Quantum Physics
dataset2. For simplicity attributes with missing values have been discarded. All
datasets have boolean target attributes. Further characteristics are listed in ta-
ble 1.

Three subgroup discovery algorithms have been integrated into the learning
environment YALE [15]. For mining subgroup rules from samples the embed-
ded WEKA [23] rule induction algorithm has been applied to stratified samples,
2 http://kodiak.cs.cornell.edu/kddcup/

Knowledge-Based Sampling for Subgroup Discovery 183

Dataset Examples # Nominal Attr. # Numerical Attr. Minority class

Quantum Physics 10.000 – 71 50.0%

Ionosphere 351 – 34 35.8%

Credit Domain 690 6 9 44.5%

Mushrooms 8.124 22 – 48.2%

Table 1. Datasets used for experimental evaluation.

which is valid due to theorem 1. The algorithm ConjunctiveRule heuristically
selects a single Horn logic rule with high predictive accuracy, which translates
into high WRAcc. It is applied repeatedly by the subgroup discovery algo-
rithms. The knowledge-based sampling algorithm (KBS) applies sampling as pre-
sented in section 4. Rules are combined as discussed in subsection 3.2, similar to
the Näıve Bayes method. KBS is compared to two other reweighting strategies
reported in the subgroup discovery literature [11]. After a positive example e
has been covered by i rules its new weight is computed as

wi(e) :=
1

i + 1
(additive), or wi(e) := γi for given γ ∈ [0, 1] (multiplicative).

Accordingly, two versions of subgroup discovery ruleset induction (SDRI) have
been implemented, which are similar to CN2-SD. The variant that applies Con-
junctiveRule on stratified samples after additive reweighting is referred to as
SDRI+, the one with multiplicative reweighting as SDRI∗. Reweighting is per-
formed iteratively. The class explicitly predicted by a rule is defined to be the
positive one, as fixing one of the classes as positive gave worse experimental re-
sults. The rulesets constructed by SDRI are combined to a single probabilistic
prediction as in CN2-SD: The predicted target class distributions of all appli-
cable rules are averaged.

The goal of subgroup discovery in this setting is to find a small set of (un-
derstandable) rules, giving a good picture of the data. In more formal terms the
probabilistic classifiers built from the rulesets should be accurate. This property
is measured by the area under the ROC curve metric (AUC) [4].

Figure 1 to 4 show how the AUC metric changes with an increasing number
of rules. All values have been estimated by 10fold cross-validation. The default
for the parameter γ of SDRI∗ was set to 0.9 as suggested in [11]. For all but
the mushrooms dataset this value gave best results3. For mushrooms the results
for the better value γ = 0.7 are reported. For a higher value of γ it generally
took more iterations to reach a similar AUC performance, for lower values the
algorithm converged more quickly, but reached worse results.

In all figures the KBS algorithm outperforms SDRI with both reweight-
ing strategies, while none of the SDRI variants is clearly superior to the other
one. In figure 1 all three algorithms manage to find useful rules repeatedly.
SDRI+ performs best for sets of 3 to 6 rules. For larger rulesets KBS is su-
perior. SDRI∗ performs worst. Figure 2 shows the performance for a smaller
3 The parameter was empirically decreased in steps of 0.1 and increased to 0.95.

184 Martin Scholz

66

68

70

72

74

76

78

5 10 15 20 25

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Fig. 1. Quantum Physics Data

88

89

90

91

92

93

94

95

96

1 5 10

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Fig. 2. Ionosphere

85.5

86

86.5

87

87.5

88

88.5

89

89.5

90

90.5

1 5 10 15 20 25 30 35

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Fig. 3. Credit Domain

94

95

96

97

98

99

100

1 5 10 15

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Fig. 4. Mushrooms

dataset. Again KBS performs best, although it overfits after the 3rd iteration.
The SDRI variants reach their maxima later. This delay is even more significant
for the credit domain data, illustrated in figure 3. After iteration 7 the pre-
dictions of KBS remain constant, while the AUC values of the SDRI rulesets
improve non-monotonically and are still significantly worse after 40 iterations.
Finally, in the experiment shown in figure 4 KBS reaches 100% AUC with just
12 rules, while SDRI does not manage to improve over the performance of the
first rule at all. As a further experiment on this dataset AdaBoost has been
run on top of ConjunctiveRule. After 15 iterations it still has an error rate
of about 2.5%.

Table 2 lists the average performance of rulesets. For the ionosphere and
credit domain dataset the number of rules with best performance regarding
AUC was chosen. For the KDD Cup data (Quantum Physics) the number of
rules was set to 15. The ROC filter for rulesets discussed in subsection 3.2 was
applied to both SDRI variants, denoted as RF in table 2. As mentioned in
subsection 4.1 some patterns are interesting relative to prior knowledge, only.
The columns AvgCov and AvgWRAcc in table 2 demonstrate that absolute
values of performance metrics may be misleading regarding how well rules are
suited to predict a target class. AvgCov denotes the average coverage of rules,

Knowledge-Based Sampling for Subgroup Discovery 185

Dataset Algorithm # Rules AUC AvgCov AvgWRAcc

Ionosphere KBS 3 96.0 (± 3.0) 42.7% 0.121

Ionosphere SDRI+ 7 92.0 (± 7.4) 37.6% 0.120

Ionosphere SDRI+, RF 4 91.7 (± 7.0) 35.3% 0.120

Ionosphere SDRI∗ 6 91.9 (± 7.3) 60.1% 0.123

Ionosphere SDRI∗, RF 3 91.0 (± 6.7) 40.6% 0.119

Credit Domain KBS 7 90.4 (± 3.4) 42.2% 0.057

Credit Domain SDRI+ 31 88.4 (± 4.2) 56.8% 0.156

Credit Domain SDRI+, RF 3 87.0 (± 5.3) 66.9% 0.139

Credit Domain SDRI∗ 27 89.9 (± 4.0) 55.8% 0.164

Credit Domain SDRI∗, RF 2 85.7 (± 5.3) 66.9% 0.139

Quantum Physics KBS 15 76.8 (± 1.2) 38.6% 0.023

Quantum Physics SDRI+ 15 76.0 (± 1.9) 50.5% 0.054

Quantum Physics SDRI+, RF 12 74.3 (± 2.0) 50.0% 0.056

Quantum Physics SDRI∗ 15 74.8 (± 2.1) 42.7% 0.071

Quantum Physics SDRI∗, RF 8 74.2 (± 2.1) 44.7% 0.074

Table 2. Performance values for different subgroup algorithms.

AvgWRAcc the average weighted relative accuracy. Global evaluation rewards
overlapping rules for reporting the same pattern multiple times, while rules cap-
turing smaller patterns not covered by any other rule may perform worse if
evaluated stand-alone. This explains why both the average absolute coverage
and absolute WRAcc of KBS is lower for two of the three datasets than the
corresponding values of SDRI, but the AUC values are still higher. The ROC
filter generally seems to neither improve the AUC score nor the average global
utility function. In most cases it prunes the ruleset at the price of a reduced
performance. Increasing coverage is comparably trivial.

As an overall result the experiments show that knowledge-based sampling
helps to shift the focus of subgroup discovery to yet undiscovered patterns, al-
lowing to find a small number of rules that help to build accurate probabilistic
classifiers. Rulesets with higher average values of utility functions that were not
constructed to maximise diversity turn out to be less accurate.

6 Conclusion

In this work local pattern mining was defined in terms of prior knowledge avail-
able to a learner. Subgroup discovery was identified as a matching learning task,
but the available algorithms do not incorporate previously discovered patterns
and prior domain knowledge into their utility functions. In section 4 a generic
way of incorporating prior knowledge by means of sampling was presented. The
selected samples do no longer reflect the prior knowledge and can be used to mine
further local patterns. Applying the utility function to such a sample means not
to reward rules for overlapping with previously known biased subsets, but to
rank rules by their new own contribution. This helps to focus on rulesets that

186 Martin Scholz

are almost orthogonal, thus the conditional independence assumption is not as
unrealistic as in general. As a consequence, rules predicting the conditional prob-
abilities of a target attribute can well be combined by the Näıve Bayes strategy.
The simplicity of the reweighting scheme allows to interpret the found patterns
either globally or in their specific context, based on the intuitive Lift measure.
To simplify subgroup discovery it was shown how to address pattern mining with
utility function WRAcc with common rule induction algorithms. The developed
subgroup discovery algorithm has been validated experimentally and shown to
outperform existing reweighting and rule combination strategies in the scope of
subgroup discovery.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

2. Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
3. Sergey Brin, Rajeev Motwani, Jeffrey Ullman, and Shalom Tsur. Dynamic Itemset

Counting and Implication Rules for Market Basket Data. In Proceedings of ACM
SIGMOD Conference on Management of Data (SIGMOD ’97), pages 255–264,
Tucson, AZ., 1997. ACM.

4. T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers,
2004. Submitted to Machine Learning.

5. Yoav Freund and Robert R. Schapire. A decision–theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119 – 139, 1997.

6. J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A
statistical view of boosting. Annals of Statistics, (28):337–374, 2000.

7. Johannes Fürnkranz and Peter A. Flach. An Analysis of Rule Evaluation Metrics.
In Proceedings of the 20th International Conference on Machine Learning (ICML-
03). Morgen Kaufman, 2003.

8. David Hand. Pattern detection and discovery. In David Hand, Niall Adams, and
Richard Bolton, editors, Pattern Detection and Discovery. Springer, 2002.

9. George H. John and Pat Langley. Estimating continuous distributions in Bayesian
classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338–345. Morgan Kaufmann, 1995.

10. Willi Klösgen. Explora: A Multipattern and Multistrategy Discovery Assistant. In
Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy
Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, chap-
ter 3, pages 249–272. AAAI Press/The MIT Press, Menlo Park, California, 1996.

11. N. Lavrac, F. Zelezny, and P. Flach. RSD: Relational subgroup discovery through
first-order feature construction. In 12th International Conference on Inductive
Logic Programming. Springer, 2002.

12. Nada Lavrac, Peter Flach, Branko Kavsek, and Ljupco Todorovski. Rule Induction
for Subgroup Discovery with CN2-SD. In Marko Bohanec, Dunja Mladenic, and
Nada Lavrac, editors, 2nd Int. Workshop on Integration and Collaboration Aspects
of Data Mining, Decision Support and MetaLearning, August 2002.

13. Nada Lavrac, Peter Flach, and Blaz Zupan. Rule Evaluation Measures: A Unifying
View. In 9th International Workshop on Inductive Logic Programming, Lecture
Notes in Computer Science. Springer, 1999.

Knowledge-Based Sampling for Subgroup Discovery 187

14. D.J.C. Mackay. Introduction To Monte Carlo Methods. In Learning in Graphical
Models, pages 175–204. 1998.

15. Ingo Mierswa, Ralf Klinkberg, Simon Fischer, and Oliver Ritthoff. A Flexible Plat-
form for Knowledge Discovery Experiments: YALE – Yet Another Learning Envi-
ronment. In LLWA 03 - Tagungsband der GI-Workshop-Woche Lernen - Lehren -
Wissen - Adaptivität, 2003.

16. Tom M. Mitchell. Machine Learning. McGraw Hill, New York, 1997.
17. Robert E. Schapire. The Strength of Weak Learnability. Machine Learning, 5:197–

227, 1990.
18. Robert E. Schapire and Yoram Singer. Improved boosting using confidence-rated

predictions. Machine Learning, 37(3):297–336, 1999.
19. Tobias Scheffer and Stefan Wrobel. A Sequential Sampling Algorithm for a Gen-

eral Class of Utility Criteria. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining, 2000.

20. Tobias Scheffer and Stefan Wrobel. Finding the Most Interesting Patterns in a
Database Quickly by Using Sequential Sampling. Journal of Machine Learning
Research, 3:833–862, 2002.

21. Avi Silberschatz and Alexander Tuzhilin. What makes patterns interesting in
knowledge discovery systems. IEEE Transactions on Knowledge and Data Engi-
neering, 8(6):970–974, dec 1996.

22. Einoshin Suzuki. Discovering Interesting Exception Rules with Rule Pair. In
ECML/PKDD 2004 Workshop, Advances in Inductive Rule Learning, 2004.

23. Ian Witten and Eibe Frank. Data Mining – Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 2000.

24. Stefan Wrobel. An Algorithm for Multi–relational Discovery of Subgroups. In
J. Komorowski and J. Zytkow, editors, Principles of Data Mining and Knowledge
Discovery: First European Symposium (PKDD 97), pages 78–87, Berlin, New York,
1997. Springer.

25. Bianca Zadrozny, John Langford, and Abe Naoki. Cost–Sensitive Learning by
Cost–Proportionate Example Weighting. In Proceedings of the 2003 IEEE Inter-
national Conference on Data Mining (ICDM’03), 2003.

Appendix

We repeat the definition of the two tasks, substituting C for Y+ (or Y−) and C
for Y− (or Y+). H denotes a set of valid Horn logic rules with head C.

Classification Find an h ∈ H maximising predictive accuracy:

Acc(h → C) = P (h ∩ C) + P (h ∩ C)

Subgroup Discovery with WRAcc Find an h ∈ H maximising

WRAcc(h → C) = P (h) · (P (C|h) − P (C))

The correctness of the theorem is shown using two lemmas.

Lemma 1. The two tasks are equivalent, if and only if the priors of both class
labels are equal:

P (C) = P (C) = 1/2

188 Martin Scholz

Proof. First we rewrite predictive accuracy:

Acc(h, C) = P (h ∩ C) + P (h ∩ C) = P (h ∩ C) +
(
P (h) − P (h ∩ C)

)
= P (h ∩ C) + P (h) − (P (C) − P (h ∩ C)) = 2P (h ∩ C) + P (h) − P (C)
= 2P (C|h)P (h) + 1 − P (h) − P (C) = 2P (h) (P (C|h) − 1/2)− P (C) (10)

The order of rules according to this metric does not change if we drop the
constant additive terms P (C) and the constant factor of 2 in formula (10), so

argmaxh∈HAcc(h, C) = argmaxh∈H (P (h) · (P (C|h) − 1/2)))

Obviously this is equivalent to WRAcc if and only if P (C) = 1/2. In this case
the corresponding rankings of H are equivalent.

If the condition of lemma 1 is violated for the original distribution D we can
perform stratified sampling using definition 7:

PD′(x) :=
PD(x)

2PD(C(x))
(11)

Considering a sample from D′ as defined by (11) we expect PD′(h) and PD′(C|h)
to differ from PD(h) and PD(C|h), respectively. As the following lemma states
such samples are nevertheless appropriate for rule selection.

Lemma 2. The order of a ruleset H induced by the WRAcc metric is equivalent
for any two distributions D and D′, as long as formula (11) holds.

Proof. Let us first rewrite PD′(h) in terms of D:

PD′(h) =
PD(h ∩ C)
2PD(C)

+
PD(h ∩ C)
2PD(C)

=
PD(h)

2

(
PD(h ∩ C)

PD(h)PD(C)
+

PD(h ∩ C)
PD(h)PD(C)

)
= PD(h) · 1

2
(
LiftD(h → C) + LiftD(h → C)

)
︸ ︷︷ ︸

=:α

(12)

Having PD′(h) = PD(h) · α allows to reformulate WRAccD′ like this:

WRAccD′(h → C) = PD′(h) · (PD′(C|h) − PD′(C))

= PD′(h) ·
(

PD′(C ∩ h)
PD′(h)

− 1/2
)

= PD(h) · α ·

⎛⎝ PD(C∩h)
2PD(C)

PD(h) · α − 1/2

⎞⎠
= PD(h) · α ·

(
1
2

PD(C ∩ h)
PD(C) · PD(h) · α − 1/2

)
=

1
2
PD(h) (LiftD(h → C) − α) (13)

Formula (13) can be simplified by rewriting α, exploiting that

LiftD(h → C) =
1 − PD(C|h)

PD(C)
=

1
PD(C)

− PD(C)
PD(C)

· LiftD(h → C) (14)

Knowledge-Based Sampling for Subgroup Discovery 189

After plugging (14) into α we receive

α = 1/2 ·
(
LiftD(h → C) +

1
PD(C)

− PD(C)
PD(C)

· LiftD(h → C)
)

= 1/2 ·
((

1 − PD(C)
PD(C)

)
LiftD(h → C) +

1
PD(C)

)
=

1
2PD(C)

·
((

PD(C) − PD(C)
)
LiftD(h → C) + 1

)
=

1
2PD(C)

· ((1 − 2PD(C))LiftD(h → C) + 1)

which can now be substituted into (13):

1
2
PD(h) · (LiftD(h → C) − α)

=
1
2
PD(h) ·

(
LiftD(h → C) − (1 − 2PD(C))LiftD(h → C) + 1

2PD(C)

)
=

1
2
PD(h) ·

(
LiftD(h → C)

(
1 − 1 − 2PD(C)

2 − 2PD(C)

)
− 1

2PD(C)

)
=

1
2
PD(h) ·

(
LiftD(h → C)

1
2 − 2PD(C)

− 1
2PD(C)

)
=

1
4PD(C)

· PD(h) · (LiftD(h → C) − 1)

=
1

4PD(C) · PD(C)
· PD(h) · (PD(C|h) − PD(C))

=
1

4PD(C) · PD(C)︸ ︷︷ ︸
irrelevant

·WRAccD(h → C) (15)

The constant factor on the left hand side does not change the ranking of rulesets.
We may drop it and end up with the definition of the WRAcc metric for D,
which completes the proof of lemma 2.

Putting together formulas (15) and (10) we receive

AccD′(h → C) = 2PD′(h) (PD′(C|h) − 1/2)− PD′(C)
= 2PD′(h) (PD′(C|h) − PD′(C)) − 1/2 = 2WRAccD′(h → C) − 1/2

=
1

2PD(C) · PD(C)
· WRAccD(h → C) − 1/2,

which proves theorem 1.

Temporal Evolution and Local Patterns

Myra Spiliopoulou and Steffan Baron

Otto-von-Guericke-Universität Magdeburg
{myra,sbaron}@iti.cs.uni-magdeburg.de

Abstract. We elaborate on the subject of pattern change as a result
of population evolution. We provide an overview of literature threads
relevant to this subject, where the focus is on related works in the area
of pattern adaptation rather than on modelling or understanding change.
We then describe our temporal model for patterns as evolving objects
and propose criteria to capture the interestingness of pattern change. We
also present heuristics that trace interesting changes.

1 Introduction

For several years, data mining has concentrated on the discovery of patterns
upon a stationary population. However, most populations under observation in
knowledge discovery are more often than not, subject to changes. Some of those
changes are due to factors internal to the population, such as aging, while others
are caused by external forces. Actions emanating from the results of knowledge
discovery also cause changes on population behaviour. Hence, pattern changes
due to external or internal influences should become integral part of the derived
knowledge on a population.

In this study we elaborate on global and local patterns over a population
evolving across the time axis. As Morik and Köpke point out in [30], local pat-
terns are not yet clearly defined. They term patterns that describe rare events
and deviate from a global model as local. Similarly, Pensa and Boulicaut put
emphasis on the fact that local patterns describe only part of the database as
they do not provide a “global picture” [38]. In this paper, we use a combination
of the aforementioned definitions: local patterns cover small parts of the data
space and deviate from the distribution of the population as a whole. In our con-
text, the data space incorporates the temporal dimension. Hence, a local pattern
characterises parts of the population for only limited time periods. Respectively,
global patterns are present during the whole lifetime of the population. Notwith-
standing this notion of locality, both global and local patterns show variations
and may exhibit trends.

When patterns are observed as temporal objects describing an evolving pop-
ulation, their conventional properties, over a stationary data-space, must be
reconsidered. Questions include: What properties uniquely identify a pattern?
� Work of this author has been performed during his PhD at the Humboldt-Universität

zu Berlin.

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 190–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Temporal Evolution and Local Patterns 191

When does a pattern cease to exist and when can we say that it has only under-
gone change? How do we distinguish between a local pattern and noise in the
population?

In this work, we build upon our previous results on modelling patterns as
temporal objects with variant and invariant properties across the time axis. From
the above questions, we concentrate on capturing and modelling pattern change
and use this model as basis for the properties of pattern locality and stability.
To distinguish between local patterns and noise, we use heuristics that assess the
interestingness of pattern changes. We focus on association rules and frequent
sequences, i.e. on patterns rather than models. We do not assume or seek a global
model for any time period.

In the first part of this paper, we discuss research threads on pattern adap-
tation over a changing population and on pattern interestingness. In the second
part, starting with section 3, we present our own approach, encompassing a tem-
poral model and a framework to describe and assess pattern interestingness. We
use our model to analyse a mail server log and report our findings. The last
section concludes the study.1

2 Research Threads on the Subject of Pattern Change

Research associated with pattern change comes from different threads. Concept
and population drift is investigated in the context of adaptive methods, in which
patterns are aligned as new data is accumulated. Incremental mining methods
serve the same objective of pattern adaptation in the field of unsupervised learn-
ing, although adhering to different priorities and paying particular emphasis to
algorithmic efficiency. In principle, such methods are suitable for the discovery
of local patterns. However, in contrast to our approach they consider all data
collected so far when updating patterns. The drawback of this approach lays in
the constantly growing time lag between data change and the detection of its
effects on the patterns.2 Closely related to our work is the research on the detec-
tion of differences among datasets. Pattern changes occur across the time axis,
so temporal mining results are of obvious relevance here. Finally, a number of
studies on the interestingness of patterns are devoted to discovering interesting
pattern changes.

A survey of all relevant literature would go beyond the scope of this study.
Rather we discuss a selection of related results, organised into three major cate-
gories: a category on “knowledge alignment” which encompasses methods for the
adaptation of patterns to change; the “change detection” category that includes
indicators and supportive algorithms to discover pattern changes; and, finally,
a category on “detection of interesting changes” that contains citations on in-
terestingness in general but focuses more on interestingness for pattern changes,

1 This paper contains and extends results reported in [7,8] and [4].
2 Due to space constraints a detailed discussion of these methods is not included here

but can be found in [6].

192 Myra Spiliopoulou and Steffan Baron

temporal patterns and temporal associations between patterns, including the
validity of temporal rules.

2.1 Knowledge Alignment

The phenomenon of pattern change in populations has led to methods for know-
ledge alignment under the label “adaptive methods”, mostly for classification.

Concept drift has been the subject of intensive research, both in its theo-
retical underpinnings and in the context of specific applications, e.g. security or
user preferences and customer retention. Much research on concept drift comes
from the domain of supervised learning. Classification upon data streams, i.e.
sequences of records, is studied in [20,41], whereby Hulten et al. gradually gen-
erate a new classifier as the old one becomes inaccurate [20], while Street and
Kim employ an ensemble of classifiers that consider all data points [41]. The
temporal aspect of concept drift is stressed by Koychev in [24].

There are various paradigms for classification. The methods of [20,41] are
based on decision trees. Support vector machines are considered in [22,43], while
Morik and Rüping focus on inductive logic programming [31]. Inductive inference
upon decision trees is proposed in [19]. The approach of Case et al. is designed
for different types of learners [10].

An interesting type of knowledge alignment concerns user profiles in infor-
mation retrieval. For example, in [36,47]: It is recognised that user preferences
change, both because document corpora drift towards new foci and because the
interests of the person themselves are not static. The algorithm “Alipes” by [47]
stresses the difference between long-term and short-term profiles, the latter cor-
responding roughly to local patterns across the time axis. Both works use user
feedback to align the profiles: Alipes recognises whether the change refers to the
long-term or the short-term profile and adapts accordingly or even replaces an
existing short-term profile with a new one [47]. Pazzani and Billsus acquire user
feedback with respect to a predefined set of topics and then adapt a classifier to
it [36], similarly to the aforementioned methods.

In [14], Wei Fan addresses the problem of selecting data chunks to mine
a concept-drifting data stream. The motivation lays in the fact that old data
may or may not be an appropriate basis for the classification of the most recent
data in the stream. The proposed algorithm uses information gain to select the
appropriate features from each data chunk and builds a classifier ensemble that
considers multiple data chunks and multiple features.

The goal of knowledge alignment is to reflect the properties of a changing
population. Perfect adaptation can be achieved by aligning the patterns to each
new record. However, this incurs a runtime overhead that is intolerable and
potentially unnecessary for some applications. Moreover, in the identification
and interpretation of change, the distinction between stationary properties of
the population and local patterns is not possible.

Temporal Evolution and Local Patterns 193

2.2 Change Detection

Orthogonally to adaptive methods, algorithms and indicators have been pro-
posed, most of them in the field of unsupervised learning, which intend to detect
population change. These contributions can roughly be subdivided based on the
schema described in [23]. They identify three types of change indicators; perfor-
mance measures, properties of the model and properties of the data. The first
type is specific to supervised learning. It corresponds to measures that help in
assessing the quality of the derived classification model. The second type refers
to properties of the model, e. g. complexity of the discovered rules. Although
explicitly mentioned in the context of classification, such measures may also be
applied in unsupervised learning tasks. Finally, properties of the data, e. g. fea-
ture space, distribution, etc., may certainly be applied to both supervised and
unsupervised learning.

Performance Measures. In the context of adaptive information filtering, Klin-
kenberg and Renz evaluate performance measures by conducting experiments us-
ing different algorithms and settings [23]. They use accuracy, precision and recall
as inputs for an algorithm that dynamically adjusts the size of the time window
on the training data. They show that in classification tasks such measures are
good indicators for pattern change, whereby recall and precision outperform
accuracy when identifying concept changes.

Simpler methods that are based on performance measures are also used by
e. g. [20] and [41]. However, it is clear that most of these indicators are not
applicable in the context of unsupervised learning. For example, a user may
measure the performance of a classifier to see if it should be adapted. On the
contrary, in clustering tasks, population drift implies that the contents and shape
of a clustering scheme may change, but the notion of a correct or proper clustering
is not well-defined.

Properties of the Data. The DELI Change Detector of Lee et al. uses a sam-
pling technique to detect changes that may affect previously discovered associ-
ation rules and invokes an incremental miner to modify the patterns as needed
[26,27].

Ganti et al. propose the DEMON framework for data evolution and monitor-
ing across the temporal dimension [18]. DEMON focuses on detecting systematic
vs. non-systematic changes in the data and on identifying the data blocks (along
the time dimension) which have to be processed by the miner in order to ex-
tract new patterns. However, the emphasis is on updating the knowledge base
by detecting changes in the data, rather than detecting changes in the patterns.
The closely related framework FOCUS (of the same group) is designed to com-
pare two datasets and compute an interpretable, qualifiable deviation measure
between them [16]. Finally, the CACTUS algorithm exploits summaries upon
datasets as the basis of “well-defined” clusters, which can then be discovered by
only two passes over each of the datasets under consideration [17].

194 Myra Spiliopoulou and Steffan Baron

The works of Ganti et al., when observed as components of a complete frame-
work, are the closest relevant work to our study of pattern evolution and iden-
tification of global and local patterns. Although the focus of [16,17,18] is on
knowledge alignment, the components could be used as the basis for a temporal
modelling of clusterings and the analysis of their evolution. In our pattern evolu-
tion method, we take a different approach by starting with a temporal model for
arbitrary patterns (in unsupervised learning) and focusing on the underpinnings
of their change rather than on their adaptation.

Properties of the Model. The IncrementalDBSCAN algorithm of Ester et
al. [13] extends the DBSCAN clustering algorithm by a component that deals
with record insertions and their effects on the contents, centroids and borders
of clusters. In this approach, there are different types of cluster members; a
cluster disappears when all its so-called “strong” members have migrated [13].
In principle, they track the movement of the strong cluster members as new data
is added in order to decide when a cluster vanishes.

Aslam et al. formalise clustering as the problem of covering graphs with
star-shaped dense subgraphs, enumerate the types of impact a record insertion
or deletion may have on the covering graph, and then propose an algorithm that
adjusts the covering graph(s) accordingly [3]. Similarly to IncrementalDBSCAN,
this algorithm adjusts the clustering scheme whenever a new record is inserted.

2.3 Detection of Interesting Changes

While classification results are usually evaluated with respect to their predic-
tive performance, the evaluation of patterns in unsupervised learning is more
challenging. For clustering, the question of a “good” clustering scheme is promi-
nent. For association rules and frequent sequences, a ranking of the patterns on
“interestingness” is of paramount importance. When observing pattern changes
caused by drifts and shifts of the underlying population, it is equally important
to assess the interestingness of the observed changes.

Interestingness criteria, as a sub-category of quality evaluation criteria, are
discussed in [32,46]. Tuzhilin et al. elaborate on the criterion of pattern “unex-
pectedness” towards the beliefs of the human expert [2,9,34,35,40]. Rule unex-
pectedness is also discussed in [15,45]. The selection of appropriate interesting-
ness measures for association rules is addressed in [28,44,45]. However, most of
these studies observe patterns derived over a static population. The temporal
aspect of patterns is addressed in [9,11].

Berger and Tuzhilin elaborate on the discovery of interesting repetitions (re-
appearances) of a pattern across a series of events. Here a pattern is interesting
if the ratio of its actual versus its expected occurrences exceeds a given threshold
[9]. Pattern discovery is based on temporal predicates, supporting the operators
NEXT, BEFORE_k (with k being a given number of events) and UNTIL. The
model of Karimi and Hamilton on the discovery of causality relationship among
events [21] further delivers a particular form of interesting temporal rules for the

Temporal Evolution and Local Patterns 195

context of temporal classification. Interestingness models for sequences of events
are further addressed in [42]. However, both works, as well as further studies
on simple or complex types of events [33,25] focus on correlations among events
belonging to the same rule rather than on correlated rules.

Chakrabarti et al. focus on the temporal properties of potentially associated
patterns [11]: they partition the time axis into time slots in such a way, that
pairs of association rules co-occurring in an unexpected way are identified.

Closely related to the work of [9,11] are the temporal mining studies of [12,37],
where the focus is on the discovery of the maximum valid interval for a rule,
subject to statistical constraints. From the viewpoint of temporal mining, the
terms “meta-mining” in [1] and “higher-order mining” in [39] have been proposed
as labels for the discovery of temporal patterns among conventional patterns
occurring along the time axis. Although there is no explicit emphasis on the
concept of “interestingness”, it is pointed out that a change in the statistical
properties of an association rule or a frequent sequence is a phenomenon of
potential interest. Our work on the evolution of patterns modelled as temporal
objects and subject to changes of content and statistics [5,6,7,8], provides the
framework and the heuristics for the discovery of interesting changes.

A model for interesting rule changes across the time axis is proposed in [29].
This model categorises rules into stable rules that exhibit no variation, rules that
show a clear trend and semi-stable rules that stand between the other two types.
The dataset is partitioned, the partitions are analysed separately and heuristics
are used to juxtapose the statistics of the rules across the partitions and assign
them to one of the three categories [29]. Our model uses a slightly similar concept
of pattern “stability” but combines it with “persistence” and “slope”; it applies
different types of heuristics to map patterns across those dimensions.

3 Temporal Management and Monitoring of Patterns

Goal of our “Pattern Monitor” is the observation of pattern evolution across
the time-line and the detection of interesting changes in patterns. Unlike pat-
tern alignment techniques, our objective is not the adaptation of patterns as
the underlying population shifts or drifts but rather the identification and cate-
gorisation of changes according to an interestingness model, so that the mining
expert can be notified accordingly.

For our pattern monitoring approach, we consider knowledge discovery as
a series of mining sessions over time between which data accumulates. Each
session reveals a set of patterns, some of them may be known from previous
sessions, while some are new and other patterns may disappear. As opposed to
the knowledge alignment techniques discussed in Section 2, known patterns are
not updated. Instead, each pattern becomes a self-standing object in the rule
base; its statistics become instances describing the pattern at each time point
of its existence. Accordingly, we model patterns as temporal objects, shift from
interesting patterns to interesting pattern changes and devise heuristics that
detect specific types of interesting change.

196 Myra Spiliopoulou and Steffan Baron

3.1 A Generic Model for Patterns as Temporal Objects

We represent patterns as temporal objects according to the model in [5]. In this
model, mining sessions are initiated at specific timestamps ti, i = 0, 1, . . . , n,
where t0 is the time point of the first analysis. In the mining session at timestamp
ti, we analyse the dataset Di collected in the period ti − ti−1, i ≥ 1. Hence, a
pattern ξ is a temporal object with the following signature 3:

ξ = ((ID, query, body, head), {(period, statistics)})

For association rules, body is the rule’s antecedent and head is the consequent.
For frequent sequences, the pattern has the form body·head. For clusterings,
each individual cluster is a pattern; body and head are empty. The query is the
specification of the mining parameters guiding the discovery process. Its syntax
depends on the interface of the miner being invoked and is external to our model.
It is retained as part of each pattern, though, because the instances of a pattern
over time only make sense if they are discovered via the same query.

The system-generated ID connects the invariant part of a pattern with the
part that can change at each timestamp. For association rules and frequent
sequences, body and head belong to the invariant part, while the statistics may
change from timestamp to timestamp. A change in the pattern’s content implies a
new pattern. For clusterings, the only invariant parts of a cluster are the cluster
identifier returned by the miner and the query that generated the clustering:
Tracing the same cluster across time is a challenging problem. Presently, we
rather perform clustering once and trace the contents of each cluster upon the
data accumulated at later timestamps.

For each period, there is one instance of the statistics of ξ. These statistics
depend on the rule type: For association rules we consider support, confidence
and lift, for clusters we record intra-cluster distance and cardinality.

Example 1. An association rule “A ⇒ B” with support 25% and confidence
90%, discovered during period t1 by mining query q is represented by RAB =
(IDAB, q, t1, [support = 0.25, confidence = 0.9], A, B).

3.2 Pattern Interestingness

The observation of pattern evolution can be performed in different ways: (i)
A new mining session is launched at each timestamp, whereupon the set of
discovered patterns is juxtaposed to the sets previously discovered. For already
existing patterns, a new instance of their statistics is inserted in the rule-base. A
new temporal object is created for each emerged pattern, whereupon the statistic
values of former (not observed) instances may be set to null. Alternatively, (ii)
only an initial mining session is launched. At each later timestamp, an instance of

3 We use the terms “timestamp” and “period” interchangeably hereafter: ti corre-
sponds to the period during which dataset Di was collected, i.e., between timestamps
ti−1 and ti, i ≥ 1.

Temporal Evolution and Local Patterns 197

each existing pattern is created, computing the statistic values from the dataset
accumulated over the corresponding time period. An elaboration of the two
methods can be found in [4].

As soon as the statistic values of all patterns under observation have been
filled up to the current timestamp ti, pattern monitoring can be performed upon
the lifetime t0 . . . ti of each pattern. The objective of the pattern monitor is to
identify those patterns, which have experienced an “interesting change”, and to
alert the mining expert accordingly.

We extend the traditional notion of pattern interestingness, which is based
on the statistics of the pattern at a time point, by considering the behaviour
of a pattern’s statistics over its whole lifetime. This allows for the identifica-
tion of interesting trends over otherwise uninteresting properties. For example,
a pattern showing high values for support and confidence may be obvious from
the application point of view. Still, if the support of this pattern exhibits large
variations or grows over a long period, this may be of importance to the user.
Hence, we define the interestingness of patterns across the following dimensions:

– Persistence: Fraction of timestamps in which pattern instances are observed.
Global patterns are those observable during most of the lifetime of a pattern.
Temporarily (in)visible patterns are local.

– Stability: Variation in the statistics of the pattern’s instances.
– Slope/Trend: Direction of change in the statistics of the pattern’s instances.

Figure 1 shows the relationship among the different dimensions of interest-
ingness for global and local patterns, respectively. As the number of changes
increases over time, the pattern becomes more noisy, while a pattern that shows
no changes at all is invariant. Depending on the slope of the changes we can
separate drifts from shifts. This is true for both global and local patterns, but
drifts and/or shifts of the latter refer only to a subset of the population.

NoisyInvariant Periodic Noisy

Local PatternsGlobal Patterns

drift

shift

subpopuation
drift

subpopuation
shift

0 10 1

none

small

large

Stability

S
l
o
p
e

Fig. 1. Interestingness for global and local patterns

We apply the interestingness dimensions among patterns by incorporating
them to a pattern monitor that alerts the mining expert whenever (1) formerly
global patterns become local, (2) variations of patterns exceed some stability
thresholds or (3) the slope of change is beyond a threshold value. In particular,
let ξ be a pattern discovered via a mining query q and let Ts(ξ) be the time-series

198 Myra Spiliopoulou and Steffan Baron

for its statistical property s. Further, let ti for i ≥ 1 be the present timestamp,
implying that the pattern’s lifetime spans the periods from t0 to ti. Then:

1. The persistence test labels a pattern as “local” if |{tj |Ts(ξ)[tj]<τs}|
i > τglobal.

In this test, τs is the threshold set upon property s, e.g. the minimum con-
fidence or support of an association rule. This threshold may be set in the
mining query q or by the expert upon already discovered patterns. The
threshold τglobal refers to the fraction of periods, where the pattern should
have been observed to be still considered global. If it is set to zero, then a
pattern is local as soon as it disappears for one period.

2. The stability test labels a pattern ξ as “changed” if Ts[ξ](ti) is different from
past values. We assess changes with the heuristics described below.

3. The slope is the angle of Ts at ti and is computed upon changed patterns.
The label “small”, resp. “large” depends on the (expert-specified) threshold.

3.3 Detecting Pattern Changes

Presently, we observe stability and slope as closely interrelated properties of
patterns. In particular, we focus on distinguishing between unstable patterns and
patterns that exhibit trends, i.e. have a non-negligible slope. For this purpose, we
use heuristics that monitor the time-series of pattern statistics and raise alerts.

Significance Tester. This heuristic applies a two-tailed binomial test to verify
whether an observed change is statistically significant or not: For a pattern ξ
and a statistical measure s, we test at each period ti whether ξ.s(ti−1) = ξ.s(ti)
at a confidence level α. The test is applied upon the data subset Di accumulated
between ti−1 and ti, so that the null hypothesis means that Di−1 is drawn from
the same population as Di. Then, for a pattern ξ an alert is raised for each time
period ti at which the null hypothesis is rejected.

The significance test is statistically well-founded. However, it makes no dis-
tinction between unstable patterns with large variation in either direction and
patterns with clear trends. Therefore, we expand the heuristic as follows: Let
t0, . . . , tn be the sequence of timestamps at which statistics are available for the
patterns and let m < n be a user-provided constant. At each time period ti, with
i < n − m we identify the set of patterns Ξi that show a change at ti according
to the binomial test above. We then perform the binomial test upon the dataset
of the aggregated time period from ti till ti+m. If there is a second significant
change within this second period, we test whether the second change cancels
the first one. If yes, we label the pattern as “unstable” and report only the first
change at ti. If not, we label the pattern as having a “large slope” and report
both changes. In this latter case, we term the change at ti as a “core alert”,
which may be used as an indicator of concept drift.

Interval Heuristic. This heuristic partitions the range of values of the statisti-
cal property under observation into consecutive intervals and raises alerts when

Temporal Evolution and Local Patterns 199

the value observed at a timestamp shifts to another interval than the values in
previous timestamps. In particular, for a property s, its value-range [Ls, Us] is
split into k intervals of equal width. 4 Then, for a pattern ξ, this heuristic raises
an alert at timestamp ti if the value of Ts(ξ)[ti] is at a different interval than the
value of Ts(ξ)[ti−1] and the absolute difference between the two values is more
than an ε. The values of k, ε are provided by the expert, whereby larger values
of k and smaller values of ε result in more alerts.

Corridor Heuristic. This heuristic defines a “corridor” around the observed
time-series of a pattern. A corridor is an interval within the value-range of the
observed statistical property, having the current average of the series as its cen-
tre. In particular, let ξ be a pattern and Ts(ξ) the time-series under observation.
At timestamp ti, we compute the mean m(Ts(ξ)[ti]) and the standard deviation
stddev(Ts(ξ)[ti]) of the time-series on the basis of the values at the time-points
Ts(ξ)[tj] for j = i − τwin, . . . , i. Here, τwin determines the window length for
a sliding window. Then, the width of the corridor at ti is the interval Is(ξ)[ti]
spanning one standard deviation stddev(Ts(ξ)[ti]) below and above the mean
m(Ts(ξ)[ti]). This heuristic raises an alert if the value Ts(ξ) is outside Is(ξ)[ti].

The corridor heuristic exploits the history of a time-series. It is insensitive to
oscillations close to the mean and thus can better distinguish between unstable
patterns and patterns showing a (temporary) trend. It is obviously sensitive to
the values of the standard deviation in the past, so that patterns with large
oscillations have also large corridors. This is not necessarily undesirable, since
the notion of trend for a pattern does depend on the past variability of the
pattern. So, differently from the significance tester, this heuristic may or may
not alert for a significant change, depending on how stable the pattern has been
thus far.

The corridor heuristic depends on the size of the sliding window. This size
τwin may be a constant value specified by the expert, expanding to cover the
whole past, i.e. τwin := i, or customised, i.e. computed according to some more
sophisticated mechanism that weights past values (e.g. [14]). Since a reliable com-
putation of the mean and standard deviation of a statistical property requires
some minimum number of observations, the expert may specify a minimum num-
ber of periods τlearn, during which no alerts are raised.

4 Experiments on Maillog Data

We applied our pattern monitoring approach upon association rules over a one
year’s log of a mailserver. We show some of the findings, namely patterns with
interesting changes from the application’s perspective.

4 One of Ls, Us may be a threshold upon s, as posed by the mining query.

200 Myra Spiliopoulou and Steffan Baron

4.1 The Mailserver Log and Its Patterns

The dataset comes from the mailserver of a university institute. For each mail,
the log contains one entry for the sender (hereafter termed as: fromline) and one
entry per recipient (hereafter: toline). Within one year, approximately 280,000
entries have been accumulated, corresponding to more than 100,000 mails.

The log was cleaned and anonymised by replacing the identifier of sender
and recipient(s) by their origin (“institute”, “faculty”, “external”) and adding
a unique mail_id to each fromline entry and the corresponding toline entries. It
was then imported into a relational DBMS. The attributes of the fromline and
of the toline were encoded into multi-attribute fields. Association rules discovery
was then performed upon the value combinations in the encoded fields.

Table 1 describes the encoding. The first digit determines whether the mail
was sent during working hours vs. weekend/holidays. Digits 2 to 4 come from
the fromline entry and indicate whether the sender belongs to the institute,
the institute’s faculty or is external. Digits 5 to 7 refer to the location of the
recipients. The last two digits denote the number of recipients.

Pos Description

1 working hours (1) or not (0)
2 sender from institute (1) or not (0)
3 sender from faculty (1) or not (0)
4 sender external (1) or not (0)

Pos Description

5 receiver in institute (1) or not (0)
6 receiver in faculty (1) or not (0)
7 receiver external (1) or not (0)

8-9 number of recipients (decimal number)

Table 1. Encoding scheme used for the mail log entries

Example 2. For a mail send from an institute member to one institute member,
the fromline is encoded into 010000001, the single toline into 000010001.

For association rules discovery, we used thresholds of 0.025 for support and
0.5 for confidence. All patterns with lift less than 1.0 were eliminated. Over
the year, 83 patterns were recorded, but only one of them was global; 73 local
patterns were present in less than 75% of the periods. Table 2 gives an overview
for the first five periods: For example, there were 13 rules in the first period, 6
of which disappeared in the second period, whereupon 12 new rules were found.

4.2 Discovery of Interesting Changes

We applied the heuristics described in the previous section to study patterns
that gave raise to alerts. As expected by the elaboration on the behaviour of the
heuristics towards unstable patterns, the alerts of the significance tester were not
intuitive, while the corridor heuristic with τwin = i for each ti raised interesting

Temporal Evolution and Local Patterns 201

number of rules

period items transactions itemsets total unknown known previous disapp

1 4058 1485 13 13 13 0 0 0
2 5038 1661 11 19 12 0 7 6
3 6000 1843 11 12 0 4 8 11
4 5454 1808 11 10 1 0 9 3
5 11776 4921 8 8 2 1 5 5

Table 2. Contents of the rule-base in the first five periods.

alerts leading to insights on the behaviour of mail users. Note that the corridor
heuristic will raise an alert if the current value of the time series differs stronger
from past values than expected.

Fig. 2 shows the time-series of support and confidence for the sole global
pattern 000100001 ⇒ 000010001. This pattern refers to mails with an external
sender and one institute recipient. The frequency of such mails may vary con-
siderably (left part of Figure). Of interest is rather the confidence time-series:
It is relatively stable, except for a single dramatic drop in t27. The alert on this
change resulted in a juxtaposition of this pattern to the other (local) patterns
and to some interesting insights on the subpopulation of the external senders.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50

su
pp

or
t

period

support
corridor borders

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

co
nf

id
en

ce

period

confidence
corridor borders

Fig. 2. Time-series of support and confidence for global pattern
000100001 ⇒ 000010001

The support time-series of two local patterns are shown in Fig. 3. They refer
to mails with a sender from the institute to one, resp. two institute members.
The support value crosses the lower boundary several times. The pattern on the
right (mails with two recipients) is quite stable. The pattern on the left (mails
with one recipient) shows large variability but only one remarkable peak in the
period at the end of the winter term, when the preparation of the examinations is

202 Myra Spiliopoulou and Steffan Baron

done by the institute members. This peak gave raise to an alert by all heuristics.
The corridor heuristic gave no further alerts for this rather noisy pattern.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50

su
pp

or
t

period

support
corridor borders

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50
su

pp
or

t
period

support
corridor borders

Fig. 3. Support of the patterns 110000001 ⇒ 100010001 and
110000002 ⇒ 100010002

The pattern in Fig. 4 is of particular interest: It refers to mails of an external
sender and two recipients, one of them being an institute member. Intuitively,
its confidence should be 1, since a mail with an external sender and no inter-
nal recipient should not have been recorded at all. The first alert allowed for a
better insight in the population: Some institute members use a mail forward-
ing option, by which their mails have external sender and external recipients.
Blocking their mails as spam would be unacceptable, so some confidence drops
should be tolerated. The corridor heuristic raises only three further alerts.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

co
nf

id
en

ce

period

confidence
corridor borders

Fig. 4. Confidence time-series of pattern 000100002 ⇒ 000010002

Temporal Evolution and Local Patterns 203

5 Conclusions

In this study, we have elaborated on the subject of pattern evolution as a basis
for the detection of interesting changes during a population’s lifetime. We have
discussed the various research threads that address pattern adaptation to popula-
tion change and pattern interestingness for stationary and for evolving patterns.
In our approach, we have modelled patterns as temporal objects and defined the
notion of interestingness upon pattern persistence, stability and slope. We have
used simple heuristics to characterise patterns with respect to their persistence
and stability and to raise alerts when changes in slope occur.

There are several open issues in the understanding of pattern change. First,
a pattern is described by several time-series reflecting its statistics; our cur-
rent interestingness model considers only one time-series as observation object.
Studying the interplay of the time-series of multiple statistical properties will
result in better insights into the behaviour of the underlying population. Sec-
ond, the patterns under observation are interdependent. The understanding of
the interdependencies among patterns on overlapping and non-overlapping parts
of the population is very important for the interpretation of the population’s
evolution. Finally, the notion of pattern locality is presently defined as non-
persistence across the time axis. A more elaborate model on local phenomena is
needed, drawing upon the results of time-series analysis on periodicity and upon
findings on correlated changes of different patterns.

References

1. T. Abrahams and John Roddick. Incremental meta-mining from large temporal
data sets. In Proc. of 1st Int. Workshop on Data Warehousing and Data Mining,
pages 41–54, 1998.

2. Gediminas Adomavicius and Alexander Tuzhilin. Discovery of actionable patterns
in databases: The action hierarchy approach. In KDD, pages 111–114, Newport
Beach, CA, Aug. 1997.

3. Javed Aslam, Katya Pelekhov, and Daniela Rus. A practical clustering algorithm
for static and dynamic information organization. In SODA: ACM-SIAM Sym-
posium on Discrete Algorithms (A Conference on Theoretical and Experimental
Analysis of Discrete Algorithms), pages 51–60, January 1999.

4. Steffan Baron. Temporale Aspekte entdeckten Wissens: Ein Bezugssystem für die
Evolution von Mustern. PhD thesis, Humboldt University Berlin, 2004. English
title: ”Temporal Aspects of Discovered Knowledge: A Framework for Pattern Evo-
lution” (On German).

5. Steffan Baron and Myra Spiliopoulou. Monitoring change in mining results.
In Proc. of 3rd Int. Conf. on Data Warehousing and Knowledge Discovery
(DaWaK’01), Munich, Germany, Sept. 2001.

6. Steffan Baron and Myra Spiliopoulou. Monitoring the results of the KDD process:
An overview of pattern evolution. In J. M. Meij, editor, Dealing with the Data
Flood: Mining data, text and multimedia, chapter 6, pages 845–863. STT Nether-
lands Study Center for Technology Trends, The Hague, Netherlands, Apr. 2002.

204 Myra Spiliopoulou and Steffan Baron

7. Steffan Baron and Myra Spiliopoulou. Monitoring the evolution of web usage pat-
terns. In Proc. of 1st European Web Mining Forum (EWMF’03), Cavtat, Slovenia,
Sept. 2003. to appear in the Workshop Proceedings as Springer LNCS/LNAI series
(due Summer 2004).

8. Steffan Baron, Myra Spiliopoulou, and Oliver Günther. Efficient monitoring of
patterns in data mining environments. In Proc. of 7th East-European Conf. on
Advances in Databases and Inf. Sys. (ADBIS’03), LNCS, pages 253–265. Springer,
Sept. 2003.

9. Gideon Berger and Alexander Tuzhilin. Discovering unexpected patterns in tempo-
ral data using temporal logic. In Opher Etzion, Sushil Jagodia, and Suryanarayana
Sripada, editors, Temporal Databases: Research and Practice, LNCS 1399, pages
281–309. Springer-Verlag Berlin, Heidelberg, 1998.

10. John Case, Sanjay Jain, Susanne Kaufmann, Arun Sharma, and Frank Stephan.
Predictive Learning Models for Concept Drift. Theoretical Computer Science,
268(2):323–349, October 2001.

11. Soumen Chakrabarti, Sunita Sarawagi, and Byron Dom. Mining Surprising Pat-
terns Using Temporal Description Length. In Ashish Gupta, Oded Shmueli, and
Jennifer Widom, editors, VLDB’98, pages 606–617, New York City, NY, August
1998. Morgan Kaufmann.

12. Xiaodong Chen and Ilias Petrounias. Mining temporal features in association rules.
In Jan Zytkow and Jan Rauch, editors, Proc. of 3rd European Conf. on Principles
and Practice of Knowledge Discovery in Databases PKDD’99, number 1704 in
LNAI, pages 295–300, Prague, Czech Republic, Sept. 1999. Springer Verlag.

13. Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, and Xiaowei
Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In
Proceedings of the 24th International Conference on Very Large Data Bases, pages
323–333, New York City, New York, USA, August 1998. Morgan Kaufmann.

14. Wei Fan. Systematic Data Selection to Mine Concept-Drifting Data Streams. In
Proc. of 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(KDD 2004), pages 128–137, Seattle, Washington, USA, August 2004. ACM Press.

15. Alex Alves Freitas. On Objective Measures of Rule Surprisingness. In Jan M.
Zytkow and Mohamed Quafafou, editors, Principles of Data Mining and Knowledge
Discovery, Proceedings of the Second European Symposium, PKDD’98, Nantes,
France, 1998. Springer.

16. Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. A Framework
for Measuring Changes in Data Characteristics. In Proceedings of the 18th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
126–137, Philadelphia, Pennsylvania, May 1999. ACM Press.

17. Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. CACTUS: Clus-
tering categorical data using summaries. In Proc. of 5th ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining (KDD ’99), pages 73–83, San Diego,
CA, Aug. 1999. ACM Press.

18. Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. DEMON: Mining
and Monitoring Evolving Data. In Proceedings of the 15th International Conference
on Data Engineering, pages 439–448, San Diego, California, USA, February 2000.
IEEE Computer Society.

19. Gunter Grieser. Hypothesis assessments as guidance for incremental and meta-
learning. In J. Keller and C. Girard-Carrier, editors, Proc. 11th European Con-
ference on Machine Learning, Workshop on Meta Learning: Building Automatic
Advice Strategies for Model Selection and Method Combination, pages 97–108, May
2000.

Temporal Evolution and Local Patterns 205

20. Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining Time-Changing Data
Streams. In Foster Provost and Ramakrishnan Srikant, editors, Proceedings of the
7th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 97–106, New York, August 2001. ACM Press.

21. Kamran Karimi and Howard J. Hamilton. Distinguishing causal and acausal tem-
poral relations. In Proc. of 7th Pacific-Asia Conf. PAKDD2003, pages 234–240,
Seoul, Korea, April/May 2003. Springer.

22. Ralf Klinkenberg and Thorsten Joachims. Detecting Concept Drift with Support
Vector Machines. In Pat Langley, editor, Proceedings of the 17th International
Conference on Machine Learning, pages 487–494, Stanford, USA, 2000. Morgan
Kaufmann Publishers, San Francisco, USA.

23. Ralf Klinkenberg and Ingrid Renz. Adaptive Information Filtering: Learning in
the Presence of Concept Drift. In Workshop on Learning for Text Categorization
at 15th National Conference on Artificial Intelligence (AAAI-98), 1998.

24. Ivan Koychev. Tracking changing user interests through prior-learning of context.
Lecture Notes in Computer Science, 2347:223–??, 2002.

25. Anni Lau, Siew Siew Ong, Ashesh Mahidadia, Achim Hoffmann, Johanna West-
brook, and Tatjana Zrimec. Mining patterns of dyspepsia symptoms across time
points using constraint association rules. In Proc. of 7th Pacific-Asia Conf.
PAKDD2003, pages 124–135, Seoul, Korea, April/May 2003. Springer.

26. Sau Dan Lee and David Wai-Lok Cheung. Maintenance of Discovered Associa-
tion Rules: When to update? In ACM-SIGMOD Workshop on Data Mining and
Knowledge Discovery (DMKD-97), Tucson, Arizona, May 1997.

27. S.D. Lee, D.W. Cheung, and B. Kao. Is Sampling Useful in Data Mining? A Case
in the Maintenance of Discovered Association Rules. Data Mining and Knowledge
Discovery, 2(3):233–262, September 1998.

28. Bing Liu, Wynne Hsu, and Shu Chen. Using General Impressions to Analyze Dis-
covered Classification Rules. In Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining, pages 31–36, Newport Beach, USA,
August 1997. AAAI Press.

29. Bing Liu, Yiming Ma, and Ronnie Lee. Analyzing the interestingness of association
rules from the temporal dimension. In IEEE International Conference on Data
Mining (ICDM-2001), pages 377–384, Silicon Valley, USA, November 2001.

30. Katharina Morik and Hanna Köpcke. Features for Learning Local Patterns in
Time-Stamped Data. In Katharina Morik, Jean-Francois Boulicaut, and Arno
Siebes, editors, Detecting Local Patterns, LNCS. Springer, Berlin, Heidelberg, New
York, 2005. to appear.

31. Katharina Morik and Stefan Rüping. A Multistrategy Approach to the Classifica-
tion of Phases in Business Cycles. Lecture Notes in Computer Science, 2430:307–
319, 2002.

32. Gholamreza Nakhaeizadeh and Alexander Schnabl. Development of multi-criteria
metrics for the evaluation of data mining algorithms. In KDD’97, pages 37–42,
Newport Beach, CA, Aug. 1997. AAAI Press.

33. Anny Ng and Ada Wai chee Fu. Mining frequent episodes for relating financial
events and stock trends. In Proc. of 7th Pacific-Asia Conf. PAKDD2003, pages
27–39, Seoul, Korea, April/May 2003. Springer.

34. B. Padmanabhan, S. Sen, A. Tuzhilin, N. White, and R. Stein. The identification
and satisfaction of consumer analysis-driven information needs of marketers on the
www. European Journal of Marketing, Special Issue on Marketing in Cyberspace,
32, 1998.

206 Myra Spiliopoulou and Steffan Baron

35. Balaji Padmanabhan and Alexander Tuzhilin. A belief-driven method for discov-
ering unexpected patterns. In KDD’98, pages 94–100, New York City, NY, Aug.
1998.

36. Michael Pazzani and Daniel Billsus. Learning and revising user profiles: The identi-
fication of interesting web sites. Machine Learning (Kluwer Academic Publishers),
27:313–331, 1997.

37. Michal Pĕchouc̆ek, Olga S̆tĕpánková, and Petr Miks̆ovský. Maintenance of Discov-
ered Knowledge. In Proceedings of the 3rd European Conference on Principles of
Data Mining and Knowledge Discovery, Lecture Notes in Computer Science, pages
476–483, Prague, Czech Republic, September 1999. Springer.

38. Ruggero G. Pensa and Jean-Francois Boulicaut. Boolean property encoding for
local set pattern discovery: an application to gene expression data analysis. In
Katharina Morik, Jean-Francois Boulicaut, and Arno Siebes, editors, Detecting
Local Patterns, LNCS. Springer, Berlin, Heidelberg, New York, 2005. to appear.

39. John F. Roddick and Myra Spiliopoulou. A survey of temporal knowledge discovery
paradigms and methods. IEEE Trans. of Knowledge and Data Engineering, Aug.
2002.

40. Avi Silberschatz and Alexander Tuzhilin. What makes patterns interesting in
knowledge discovery systems. IEEE Trans. on Knowledge and Data Eng., 8(6):970–
974, Dec. 1996.

41. W. Nick Street and YongSeog Kim. A Streaming Ensemble Algorithm (SEA) for
Large-Scale Classification. In Foster Provost and Ramakrishnan Srikant, editors,
Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 377–388, New York, August 2001. ACM Press.

42. Xingzhi Sun, Maria E. Orlowska, and Xiaofang Zhou. Finding event-oriented pat-
terns in long temporal seuquences. In Proc. of 7th Pacific-Asia Conf. PAKDD2003,
pages 15–26, Seoul, Korea, April/May 2003. Springer.

43. Nadeem Ahmed Syed, Huan Liu, and Kah Kay Sung. Handling Concept Drifts
in Incremental Learning with Support Vector Machines. In Surajit Chaudhuri
and David Madigan, editors, Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 317–321, San Diego,
USA, August 1999. ACM Press.

44. Pang-Ning Tan and Vipin Kumar. Interestingness Measures for Association Pat-
terns: A Perspective. In Workshop on Post Processing in Machine Learning and
Data Mining at 6th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, Boston, USA, August 2000.

45. Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the Right Inter-
estingness Measure for Association Patterns. In Proc. of the 8th ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining, 2002.

46. Michalis Vazirgiannis, Maria Halkidi, and Dimitrios Gunopoulos. Uncertainty Han-
dling and Quality Assessment in Data Mining. Springer, 2003.

47. Dwi H. Widyantoro, Thomas R. Ioerger, and John Yen. An adaptive algorithm for
learning changes in user interests. In Proc. of CIKM’99, pages 405–412, Kansas
City, MO, Nov. 1999. ACM.

Undirected Exception Rule Discovery

as Local Pattern Detection

Einoshin Suzuki

Electrical and Computer Engineering, Yokohama National University, Japan
suzuki@ynu.ac.jp

Abstract. In this paper, we give an interpretation of our undirected
exception rule discovery as local pattern detection and introduce some
of our endeavors. Our undirected exception rule discovery outputs a set of
rule pairs, each of which represents a pair of strong rule and its exception
rule. A local pattern is defined as a pattern which deviates from a global
model, and can be considered to correspond to our exception rule if
the global model corresponds to our strong rule. Several attempts for
undirected exception rule discovery are introduced in the context of local
pattern detection. Our results mainly concern interestingness measure,
algorithmic issues, noise modeling, and performance evaluation.

1 Introduction

Traditionally, researchers in KDD (Knowledge Discovery in Databases) were
seeking to find global models that explain most of the examples in the data set.
This applies to rule discovery, where a rule [1, 10] is a statement of a regularity
in the form of “if premise then conclusion”. Most of the researchers in rule
discovery have focused on discovering a set of strong rules, each of which is a
description of a regularity for numerous objects with few counterexamples, from
a data set. However, it has been pointed out that such a strong rule is often
uninteresting, because it typically represents a well-known fact in the domain
[6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24].

In 2002, David Hand proposed to decompose an explanation of data into a
background model, local patterns, and random noise [2]. In 2004, The definition
of local patterns was intensively discussed at the Dagstuhl Seminar 04161, which
brought the followings as an agreement [2].

– Local patterns cover small parts of the data space.
– local patterns deviate from the distribution of the population of which they

are part.
– Local patterns show some internal structure.

Local patterns can be interesting as targets of discovery since they deviate from
their background model thus they might represent unknown facts in the domain.

The above decomposition fits the definition of exception rules [4, 6, 7, 8, 9,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24], each of which is a deviation

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 207–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

208 Einoshin Suzuki

from a strong rule. A strong rule is discovered from the entire data, its exception
rule mostly explains the counterexamples of the strong rule, and the remaining
examples which are neither explained by the strong rule nor the exception rule
are ignored as random noise. For instance, a strong rule “using a seat belt is
safe” explains most of the examples, its exception rule “using a seat belt is risky
for a child” explains a part of counterexamples of the strong rule, and children
who are safe by using seat belts are extremely small in number thus are ignored.
It should be noted that an exception rule is known to be possibly beneficial since
it can differ from a basis for people’s daily activity.

Discovery methods for exception rules can be divided into two approaches
from the viewpoint of background knowledge1. In a directed approach [6, 8, 9],
a method is first provided with background knowledge typically in the form of
rules, then the method obtains exception rules each of which deviates from these
rules2. In an undirected approach [4, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 24], on the other hand, no background knowledge is provided. The target of
discovery is typically a set of rule pairs each of which consists of an exception rule
and its corresponding strong rule. In the framework of local pattern detection,
the direct approach corresponds to providing information of the model while the
undirected approach seeks for the models and the local patterns simultaneously.
If the objective of local pattern detection concerns discovery of unknown facts
in the domain, the undirected approach is more appropriate than the directed
approach.

Despite of its importance, one of the major difficulties for an undirected ap-
proach corresponds to its time complexity. Rule discovery is time-consuming un-
less it resorts to fast heuristic search. Compared with the directed approach, the
undirected approach suffers from extra search for strong rules. Let the number
of examples in a data set and the number of conditions in a premise be n and
M respectively, then the time complexity of single-rule discovery is typically
Ω(nM+1), while rule-pair discovery requires Ω(n2M+1). Note that the former
searches for combinations of M conditions in the premise and the conclusion
while the latter has extra M conditions in the premise of the exception rule.
Therefore, algorithmic issues for making the discovery algorithm time-efficient
are important. Other important issues concern interestingness measure, noise
modeling, and performance evaluation. In this paper, we summarize a part of
our results for these issues.

2 Description of the Problem

We assume that an example ei is a description about an object stored in a data
set in the form of a record, and a data set contains n examples e1, e2, · · · , en. An
example ei is represented by a tuple < yi1, yi2, · · · , yim > where yi1, yi2, · · · , yim

1 According to Silberschatz and Tuzhilin, these approaches can be named as subjective
and objective [9] respectively.

2 Several methods such as [8] provide additional search to find more interesting rules
from the exception rules.

Undirected Exception Rule Discovery as Local Pattern Detection 209

are values for m discrete attributes. Here, a continuous attribute is supposed to
be converted to a nominal attribute using an existing method such as presented
in [3]. An event representing a value assignment to an attribute will be called an
atom.

We define a conjunction rule as a rule of which premise is represented by a
conjunction of atoms, and of which conclusion is a single atom.

Yμ → x (1)

where Yμ ≡ y1∧y2∧· · ·∧yμ is a conjunction of atoms and x is a single atom. We
assume that atoms y1, y2, · · · , yμ, x have different attributes. In this paper,
we mainly consider the problem of finding a set of rule pairs each of which
consists of an exception rule associated with a strong rule. Suppose a strong rule
is represented by “if Yμ then x”, where Yμ ≡ y1 ∧ y2 ∧ · · · ∧ yμ is a conjunction
of atoms and x is a single atom. Let Zν ≡ z1 ∧ z2 ∧ · · · ∧ zν be a conjunction of
atoms and x′ be a single atom which has the same attribute but a value different
to the atom x, then the exception rule is represented by “if Yμ and Zν then x′”.
The discovered pattern in our approach is, therefore, represented by a rule pair
r(x, x′, Yμ, Zν), where M is a user-specified parameter for the maximum number
of atoms in a premise.

r(x, x′, Yμ, Zν) ≡
{

Yμ → x
Yμ ∧ Zν → x′ (2)

μ, ν ≤ M

Our objective is to discover a set of (possibly) interesting rule pairs from a
data set. The set is specified by assuming either an evaluation criterion or a set
of constraints.

From the viewpoint of local pattern detection, our undirected exception rule
discovery can be considered as a general case of subgroup discovery [5], which
represents the case of Yμ = φ in (2). In this case, a rule pair degenerates to
(x, Zν → x′) thus the problem can be regarded as search for Zν which defines a
subgroup for a different conclusion x′. We believe that our undirected exception
rule discovery can be considered as a general case of subgroup discovery since
the former has extra search for (Yμ, x, x′). Though we don’t deal with the case
of subgroup discovery, it would be straightforward to include it in our methods.

3 Methods for Undirected Exception Rule Discovery

3.1 MEPRO with Its Interestingness Measure and
Branch-and-Bound Method

Our rule-pair discovery method MEPRO [11] represents the first method for
undirected discovery of exception rules. From the viewpoint of local pattern de-
tection, its interestingness measure, which balances the measure for the model

210 Einoshin Suzuki

and the measure for the local pattern, deserves attention. Moreover, its branch-
and-bound method represents an effective example of algorithmic issues for mak-
ing the discovery algorithm time-efficient.

MEPRO is based on a rule discovery system ITRULE [10]. The essential of
ITRULE lies in its interestingness measure J , which corresponds to the quantity
J(x; y) of information compressed by a rule y → x.

J(x; y) = Pr(y) j(x; y) (3)

where j(x; y) = Pr(x|y) log2

Pr(x|y)
Pr(x)

+ Pr(x|y) log2

Pr(x|y)
Pr(x)

(4)

We defined our measure of interestingness of a rule pair as a product ACEP
(x, Yμ, x′, Zν) of J-measure of a strong rule and J-measure of an exception rule
[11]. Our motivation was to obtain rule pairs each of which consists of rules
with large J-measure values. We have proved that J(x; Yμ) + J(x′; Yμ ∧ Zν) is
inappropriate as an evaluation index since it is dominated by one of J(x; Yμ)
and J(x′; Yμ ∧ Zν) when it is large [11].

ACEP(x, Yμ, x′, Zν) ≡ J(x; Yμ)J(x′; Yμ ∧ Zν) (5)

We have then proposed a discovery algorithm which generates K rule pairs,
where K is a user-specified parameter. In the algorithm, a discovery task is
viewed as a search problem, in which a node of a search tree represents a rule
pair r(x, x′, Yμ, Zν). A depth-first search method with maximum depth D is
employed to traverse this tree. We begin by adding atoms in the conclusions,
and then add atoms in the premises. K Rule pairs which have the highest scores
for ACEP(x, Yμ, x′, Zν) are updated during the search. Let μ = 0 and ν = 0
represent the state in which Yμ = Zν = φ, then we define that μ = ν = 0 holds
in a node of depth 1, and as the depth increases by 1, an atom is added to
the premise of the general or exceptional rule. A node of depth 2 is assumed to
satisfy μ = 1 and ν = 0; a node of depth 3, μ = ν = 1; and a node of depth
l (≥ 4), μ + ν = l − 1 (μ, ν ≥ 1). Therefore, a descendant node represents a rule
pair r(x, x′, Yμ′ , Zν′) where μ′ ≥ μ and ν′ ≥ ν.

Note that, during the search process, we can safely prune a subtree of
the search tree if all the rule pairs in the subtree have lower scores for
ACEP(x, Yμ, x′, Zν) than the K-th highest score exhibited by the discovered
rule pairs. This idea is the motivation behind the branch-and-bound method,
which requires an upper-bound of ACEP(x, Yμ, x′, Zν) of a subtree of the search
tree. According to the following theorem, an upper-bound exists for the ACEP
of the rule pairs in the search tree [11].

Theorem 1. Let H(α) ≡ [α/{(1 + α) Pr(x)}]2α/{(1 + α) Pr(x)}, α1 and α2

satisfy H(α1) > 1 > H(α2), and ACEP = ACEP(x, Yμ′ , x′, Zν′).
If H(Pr(x′, Yμ, Zν)/ Pr(x, Yμ)) < 1 then,

ACEP < α2 Pr(x, Yμ)2
{

log2

(
1

1 + α1

1
Pr(x)

)
+ α1 log2

(
α1

1 + α1

1
Pr(x)

)}
· log2

1
Pr(x′)

Undirected Exception Rule Discovery as Local Pattern Detection 211

else

ACEP ≤
{

Pr(x, Yμ) log2

(
p(x, Yμ)

Pr(x, Yμ) + Pr(x′, Yμ, Zν)
1

Pr(x)

)
+ Pr(x′, Yμ, Zν)

· log2

(
Pr(x′, Yμ, Zν)

p(x, Yμ) + Pr(x′, Yμ, Zν)
1

Pr(x)

)}
Pr(x′, Yμ, Zν) log2

1
Pr(x′)

This upper bound was employed in our approach for a branch-and-bound method
which guarantees the optimal solution and is expected to be time-efficient. In
other words, our branch-and-bound method typically speeds up search without
changing the discovery outcome.

We have also introduced probabilistic constraints for eliminating rule pairs
each of which has a large Pr(x′|Zν) [12]. We have also considered unexpectedness
from a different perspective and proposed a novel probabilistic criterion which
mainly considers the number of counter-examples [14].

3.2 PADRE with Its Noise Distinction

In the next method PADRE [13, 20], we mainly pursued the problem of distin-
guishing local patterns from noise. Intuitively, an exception rule which explains
“few” examples can be considered as noise rather than a local pattern. We have
proposed a method based on simultaneous estimation of true probabilities as an
analytical solution to this problem. In PADRE, on the other hand, the inter-
estingness measure is simplified to threshold specification and as the result, the
branch-and-bound method is substituted by a pruning method.

In rule discovery, generality and accuracy can be considered as frequently-
used criteria for evaluating the goodness of a rule. In case of a conjunction rule
Yμ → x, these two criteria correspond to the probability Pr(Yμ) of the premise
and the conditional probability Pr(x|Yμ) of the conclusion given the premise
respectively [10]. Similar to [1], we specify two minimum thresholds θS

1 and θF
1

for generality and accuracy of the strong rule respectively. Two thresholds θS
2 and

θF
2 are also specified for generality and accuracy of the exception rule respectively.

Consider the case in which the accuracy of a rule Zν → x′, which we call a
reference rule, is large. In such a case, an exception rule can be considered as
expected since it can be easily guessed from this rule. In order to obtain truly
unexpected exception rules, we specify a maximum threshold θI

2 for the accuracy
of a reference rule.

We then proposed the method PADRE in which we specify thresholds θS
1 , θF

1 ,
θS
2 , θF

2 , θI
2 for probabilistic criteria of a rule pair. Since a rule pair discovered

from 10,000 examples exhibits different reliability from another rule pair discov-
ered from 100 examples, it is inappropriate to use a ratio P̂r(·) in a data set
as a probabilistic criterion. Therefore, we considered a true probability Pr(·) for
each probabilistic criterion, and obtained a set of rule pairs each of which sat-
isfies discovery conditions with the significance level δ [13, 20]. In the following,
MIN(a, b) and MAX(a, b) represent the smaller one and the larger one of a and
b respectively.

212 Einoshin Suzuki

Pr[Pr(Yμ) ≥ θS
1 , Pr(x|Yμ) ≥ MAX(θF

1 , P̂r(x)), Pr(YμZν) ≥ θS
2 ,

Pr(x′|YμZν) ≥ MAX(θF
2 , P̂r(x′)), Pr(x′|Zν) ≤ MIN(θI

2, P̂r(x′))] ≥ 1 − δ

(6)

Calculating (6) is difficult due to two reasons. First, obtaining a value of
a true probability requires assumptions. Second, calculating (6) for a rule pair
numerically is time-consuming since (6) contains five true probabilities. PADRE
overcomes these difficulties by obtaining analytical solutions based on simul-
taneous estimation of true probabilities. Let the number of examples in the
data set be n, and (n Pr(xYμZν), n Pr(x′YμZν), n Pr(xx′YμZν), n Pr(xYμZν),
n Pr(xYμZν), n Pr(x′YμZν), n Pr(x′YμZν)) follow a multi-dimensional normal
distribution, then (6) is equivalent to (7) - (11) [13, 20].

G(Yμ, δ, k)P̂r(Yμ) ≥ θS
1 (7)

F (Yμ, x, δ, k)P̂r(x|Yμ) ≥ θF
1 (8)

G(YμZν , δ, k)P̂r(YμZν) ≥ θS
2 (9)

F (YμZν , x′, δ, k)P̂r(x′|YμZν) ≥ θF
2 (10)

F ′(Zν , x′, δ, k)P̂r(x′|Zν) ≤ θI
2 (11)

where G(a, δ, k) ≡ 1 − β(δ, k)

√√√√1 − P̂r(a)

nP̂r(a)
(12)

F (a, b, δ, k) ≡ 1 − β(δ, k)ϕ(a, b) (13)
F ′(a, b, δ, k) ≡ 1 + β(δ, k)ϕ(a, b)

ϕ(a, b) ≡

√√√√ P̂r(a) − P̂r(a, b)

P̂r(a, b){(n + β(δ, k)2)P̂r(a) − β(δ, k)2}
(14)

Here β(δ, k) represents a positive value which is related to the confidence re-
gion and is obtained by numerical integration [13, 20]. In PADRE, we assume
that a true probability among Pr(xYμZν), Pr(x′YμZν), Pr(xx′YμZν), Pr(xYμZν),
Pr(xYμZν), Pr(x′YμZν), Pr(x′YμZν) is equal to 0 if the corresponding esti-
mated probability is equal to 0. Therefore, the number k′ of true probabili-
ties each of which is satisfied by at least an example in the data set deter-
mines the dimensionality of the ellipsoid which corresponds to the confidence re-
gion of (n Pr(xYμZν), n Pr(x′YμZν), n Pr(xx′YμZν), n Pr(xYμZν), n Pr(xYμZν),
n Pr(x′YμZν), n Pr(x′YμZν)). In (7) - (14), k = k′ − 1. We have also proposed
an efficient discovery algorithm based on pruning.

4 Evaluation with Real Data Sets

In the Dagstuhl Seminar 04161, the participants recognized that benchmark data
for evaluating methods for local pattern detection were missing. Our evaluation,

Undirected Exception Rule Discovery as Local Pattern Detection 213

which we present in this section, for undirected exception rule discovery with
real data sets might suggest a solution to this problem.

We participated in a data mining contest with the meningitis data set [17].
The data set consists of 140 patients each of whom is described by 38 attributes
and has been made public as a benchmark problem to the data mining commu-
nity. Since the data set is relatively small, we used a modified version of PADRE
without noise distinction i.e. we used the following as evaluation criterion.

Pr(Yμ) ≥ θS
1 , Pr(x|Yμ) ≥ MAX(θF

1 , P̂r(x)), Pr(YμZν) ≥ θS
2 ,

Pr(x′|YμZν) ≥ MAX(θF
2 , P̂r(x′)), Pr(x′|Zν) ≤ MIN(θI

2, P̂r(x′)) (15)

Since specification of thresholds θS
1 , θF

1 , θS
2 , θF

2 , θI
2 can be a laborious task, we

used a method which dynamically adjusts the values of the thresholds [15].
Our method has discovered 169 rule pairs from a pre-processed version of

this data set [17]. These rule pairs were inspected by Dr. Tsumoto, who is a
domain expert, and each rule pair was assigned a five-rank score for the following
evaluation criteria each of which was judged independently.

– validness: the degree that the discovered pattern fits domain knowledge
– novelty: the degree that the discovered pattern does not exist in domain

knowledge
– usefulness: the degree that the discovered pattern is useful in the domain
– unexpectedness: the degree that the discovered pattern partially contradicts

domain knowledge

For the scores, five and one represent the best score and the worst score re-
spectively. We show the results classified by the attributes in the conclusions in
Table 1.

From the Table, we see that the average scores of the discovered rule pairs
are high for several attributes in the conclusions. We inspected these rule pairs
by grouping them with respect to the attribute in the conclusion, and found that
these attributes can be classified into four categories. The first category repre-
sents attributes with the lowest scores, and includes CULTURE, C COURSE,
and RISK. We consider that attributes in this category cannot be explained
with this data set, and investigation on them requires further information on
other attributes. The second category represents attributes with higher scores
for validness and usefulness, and includes FOCAL, LOC DAT, and Diag2. We
consider that attributes in this category can be explained with this data set,
and has been well investigated probably due to their importance in this domain.
We regard them as one of important targets in discovery although one will of-
ten rediscover conventional knowledge. The third category represents attributes
with approximately equivalent scores, and includes CT FIND, EEG FOCUS,
and Course (G). We consider that attributes in this category can be explained
with this data set, and has not been investigated well in spite of their impor-
tance in this domain. We regard them as one of the most important targets in
discovery. The fourth category represents attributes with higher scores for nov-
elty and unexpectedness, and includes CULT FIND, KERNIG, and SEX. We

214 Einoshin Suzuki

Table 1. Average performance of the proposed method with respect to attributes
in the conclusion. The column “#” represents the number of discovered rule
pairs.

attribute # validness novelty unexpectedness usefulness

(all) 169 2.9 2.0 2.0 2.7

CULTURE 2 1.0 1.0 1.0 1.0
C COURSE 1 1.0 1.0 1.0 1.0

RISK 1 1.0 1.0 1.0 1.0

FOCAL 18 3.1 2.2 2.7 3.0
LOC DAT 11 2.5 1.8 1.8 2.5

Diag2 72 3.0 1.1 1.1 2.6

CT FIND 36 3.3 3.0 3.0 3.2
EEG FOCUS 11 3.0 2.9 2.9 3.3
Course (G) 8 1.8 2.0 2.0 1.8

CULT FIND 4 3.3 4.0 4.0 3.5
KERNIG 4 2.0 3.0 3.0 2.0

SEX 1 2.0 3.0 3.0 2.0

consider that attributes in this category can be explained with this data set,
but has been somewhat ignored. We consider that investigating these attributes
using discovered rule sets can lead to interesting discoveries which might reveal
unknown mechanisms in this domain in spite of their apparent low importance.

As Dr. Tsumoto admits, our success is due to the fact that the structure of
a rule pair is useful for discovery of interesting patterns. According to him, our
method discovered the most interesting results in the data mining contest [23].

Our method has been also applied to 1994 bacterial test data set (20,919
examples, 135 attributes, 2 classes) [18]. We have found that we need to consider
distribution of attribute values and cause and effect relationships in order to
discover interesting patterns from the data set. However, this application shows
that our method is adequate in terms of efficiency in exception rule mining from
a relatively large-scale data set.

5 Concluding Remarks

In this paper, we have introduced our undirected exception rule discovery from
the viewpoint of local pattern detection. MEPRO shows an effective solution to
the interestingness measure problem and the time inefficiency problem. PADRE,
on the other hand, shows a solution to how to distinguish local patterns from
noise. Our endeavor in a data mining contest might suggest a solution to the
problem of performance evaluation.

In local pattern detection, a global model and a local pattern typically adopt
different representations. Our undirected exception rule discovery represents
each of them as a rule thus might deviate from our intuition on local pattern

Undirected Exception Rule Discovery as Local Pattern Detection 215

detection. A global model typically explains most of the data while our strong
rule, which corresponds to the global model in our framework, explains a large
number of examples but not most of the examples. However, recall that one of
the main objectives of local pattern detection is to find unknown facts in the
domain. Our undirected exception rule discovery is considered to be promising
since it seeks for various kinds of combinations of a global model and a local
pattern. We believe that various combinations of representations for a global
model and its local patterns will be proposed in the coming years, which would
results in proliferation of local pattern detection research. Our endeavor can be
considered as an early attempt in this research stream.

Acknowledgement

This work was partially supported by the grant-in-aid for scientific research on
priority area “Active Mining” from the Japanese Ministry of Education, Culture,
Sports, Science and Technology.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, “Fast Dis-
covery of Association Rules”, Advances in Knowledge Discovery and Data Min-
ing , eds. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
AAAI/MIT Press, Menlo Park, Calif., 1996, pp. 307–328.

[2] Dagstuhl 2004, Dagstuhl seminar: Detecting Local Patterns, http://www-
ai.cs.uni-dortmund.de/DAGSTUHL2004/index.html, 2004 (current November 18,
2004).

[3] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and Unsupervised Dis-
cretization of Continuous Features”, Proc. Twelfth Int’l Conf. Machine Learning
(ICML), Morgan Kaufmann, San Francisco, 1995, pp. 194–202.

[4] F. Hussain, H. Liu, E. Suzuki, and H. Lu, “Exception Rule Mining with a Relative
Interestingness Measure”, Knowledge Discovery and Data Mining, LNAI 1805
(PAKDD), Springer, Berlin, 2000, pp. 86–97.

[5] W. Klösgen, “Explora: A Multipattern and Multistrategy Discovery Approach”,
Advances in Knowledge Discovery and Data Mining , eds. U. M. Fayyad et al.,
AAAI/MIT Press, Menlo Park, Calif., 1996, pp. 249–271.

[6] B. Liu, W. Hsu, L.F. Mun, and H.Y. Lee, “Finding Interesting Patterns Using
User Expectations”, IEEE Trans. Knowledge and Data Eng., 11, 1999, pp. 817–
832.

[7] B. Liu, W. Hsu, and Y. Ma, “Pruning and Summarizing the Discovered Associ-
ations”, Proc. Fifth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD), 1999, pp. 125–134.

[8] B. Padmanabhan and A. Tuzhilin, “A Belief-Driven Method for Discovering Unex-
pected Patterns”, Proc. Fourth Int’l Conf. Knowledge Discovery and Data Mining
(KDD), AAAI Press, Menlo Park, Calif., 1998, pp. 94–100.

[9] A. Silberschatz and A. Tuzhilin, “What Makes Patterns Interesting in Knowledge
Discovery Systems”, IEEE Trans. Knowledge and Data Eng., 8, 1996, pp. 970–
974.

216 Einoshin Suzuki

[10] P. Smyth and R. M. Goodman, “An Information Theoretic Approach to Rule
Induction from Databases”, IEEE Trans. Knowledge and Data Eng., 4, 1992,
pp. 301–316.

[11] E. Suzuki and M. Shimura, “Exceptional Knowledge Discovery in Databases
Based on Information Theory”, Proc. Second Int’l Conf. Knowledge Discovery
and Data Mining (KDD), AAAI Press, Menlo Park, Calif., 1996, pp. 275–278.

[12] E. Suzuki, “Discovering Unexpected Exceptions: A Stochastic Approach”, Proc.
Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery
(RSFD), 1996, pp. 225–232.

[13] E. Suzuki, “Autonomous Discovery of Reliable Exception Rules”, Proc. Third Int’l
Conf. Knowledge Discovery and Data Mining (KDD), AAAI Press, Menlo Park,
Calif., 1997, pp. 259–262.

[14] E. Suzuki and Y. Kodratoff, Discovery of Surprising Exception Rules Based on
Intensity of Implication, Principles of Data Mining and Knowledge Discovery,
LNAI 1510 (PKDD), Springer, 1998, pp. 10–18.

[15] E. Suzuki, “Scheduled Discovery of Exception Rules”, Discovery Science, LNAI
1721 (DS), Springer, Berlin, 1999, pp. 184–195.

[16] E. Suzuki and S. Tsumoto, “Evaluating Hypothesis-Driven Exception-Rule Dis-
covery with Medical Data Sets”, Knowledge Discovery and Data Mining, LNAI
1805 (PAKDD), Springer, Berlin, 2000, pp. 208–211.

[17] E. Suzuki and S. Tsumoto, Evaluating Hypothesis-driven Exception-rule Discov-
ery with Medical Data Sets, Knowledge Discovery and Data Mining, LNAI 1805
(PAKDD), Springer, 2000, pp. 208–211.

[18] E. Suzuki, “Mining Bacterial Test Data with Scheduled Discovery of Exception
Rules”, Proc. Int’l Workshop of KDD Challenge on Real-world Data (KDD Chal-
lenge), Kyoto, Japan, 2000, pp. 34–40.

[19] E. Suzuki and J.M. Żytkow, Unified Algorithm for Undirected Discovery of Ex-
ception Rules, Principles of Data Mining and Knowledge Discovery, LNAI 1910
(PKDD), Springer, 2000, pp. 169–180.

[20] E. Suzuki: “Undirected Discovery of Interesting Exception Rules”, International
Journal of Pattern Recognition and Artificial Intelligence, Vol. 16, No. 8, 2002,
pp. 1065–1086.

[21] E. Suzuki: “Evaluation Scheme for Exception Rule/Group Discovery”, Intelligent
Technologies for Information Analysis, Springer, Berlin, 2000, pp. 89–108.

[22] E. Suzuki: “Unified Algorithm for Undirected Discovery of Exception Rules”,
International Journal of Intelligent Systems (accepted for publication).

[23] S. Tsumoto et al., “Comparison of Data Mining Methods using Common Medical
Datasets”, ISM Symp.: Data Mining and Knowledge Discovery in Data Science,
1999, pp. 63–72.

[24] N. Yugami, Y. Ohta, and S. Okamoto, “Fast Discovery of Interesting Rules”,
Knowledge Discovery and Data Mining, LNAI 1805 (PAKDD), Springer, Berlin,
2000, pp. 17–28.

From Local to Global Analysis

of Music Time Series

Claus Weihs and Uwe Ligges

Fachbereich Statistik, Universität Dortmund, D-44221 Dortmund, Germany�

Abstract. Local and more and more global musical structure is ana-
lyzed from audio time series by time-series-event analysis with the aim
of automatic sheet music production and comparison of singers. Note
events are determined and classified based on local spectra, and rules of
bar events are identified based on accentuation events related to local
energy. In order to compare the performances of different singers global
summary measures are defined characterizing the overall performance.

1 Introduction

Music has obviously a global structure. At least classical music is played from
well-structured scores. Music has, however, also local structures, the most local
structure being a period of time with a certain frequency, the most local struc-
ture relevant for scores is a note. Obvious more global structures are measures,
indicated by bars, and musical motifs, phrases, etc. Such a hierarchy of more
and more global structure might be revealed by means of automatic analysis
of music time series. Such analysis is demonstrated by means of transcription
of vocal time series into sheet music. With the performance of songs, however,
more global structure can be identified. Apart from pitch correctness especially
timbre gives a basis for comparison of different singers. For such comparison
global characteristics of performances are derived.

The basic data was generated by an experiment where 17 singers, amateurs
as well as professionals, all voice types, sung the classical song “Tochter Zion”
(G.F. Händel), the piano accompaniment played back via headphones (Weihs et
al., 2001). The transcription of these performances to sheet music was carried
out by the analysis of the corresponding time series followed by classification
using minimal background information about the piece of music and the singer
in order to be able to automatically transcribe unknown music as well (Weihs
and Ligges, 2003a).

The analysis is embedded in a more general concept of combination of time
series and event analysis (cp. Figure 1; Morik, 2000). Events are derived from
time series, event rules are derived from events, and time series models might be
directly derived from time series or from event rules. The adequacy of this general

� The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, “Reduction
of complexity in multivariate data structures”) is gratefully acknowledged.

K. Morik et al. (Eds.): Local Pattern Detection, LNAI 3539, pp. 217–231, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

218 Claus Weihs and Uwe Ligges

e1 e2
„e1 ⇒ e2“

time series

events event rules

time series model

Fig. 1. Time-Series-Event Diagram

scheme for the indicated analysis of music time series is discussed. Steps from
local to global analysis of music time series concerning automatic production of
sheet music are:

1. Identification of musical local structure by testing against background in
local blocks of the time series.

2. Pitch estimation in local blocks.
3. Identification of tone change events on the basis of pitch estimation, after

smoothing off vibrato.
4. Classification of notes (note events) corresponding to different tones on the

basis of constant tempo (static quantization).
5. Identification of local tempo, re-classification of notes (dynamic quantiza-

tion).
6. Combination of notes to measures (bar events) by identification of meter

via identification of high relative energy.
7. Key identification by comparing the identified notes with notes expected

in keys.
8. Identification of rhythm by comparison with rhythm patterns.
9. Combination of notes to motifs by identification of repeated similar series

of notes.
10. Combination of bars to phrases (e.g. 2 bars).
11. . . .

For comparison of the performances of different singers characterizations of
the performance of the song as a whole are defined, again based on the spectra
of local blocks (Weihs and Ligges, 2003b).

Section 2 introduces the data the example analysis is based upon. Section 3
introduces blocking, the basic data preparation for finding local structure in
music time series. Section 4 discusses automatic transcription into sheet music,
and section 5 global comparison of singers. Section 6 gives a conclusion.

From Local to Global Analysis of Music Time Series 219

Fig. 2. Sheet Music of “Tochter Zion” (G.F. Händel)

2 Data

The sheet music of “Tochter Zion” (G.F. Händel) can be found in Figure 2.
Note the “ABA” structure of the song. This song was sung by 17 singers and
recorded in CD-quality (44100 Hz, 16 bit), but down sampled to 11025 Hz before
use. Depending on the task, the corresponding time series, so-called wave, was
transformed to spectra, e.g. for pitch estimation, and to energy, e.g. for tempo or
meter analysis, both locally in blocks of 512 observations (see next section). For
global comparisons of performances spectral characterizations of whole perfor-
mances are derived from local spectra of 2048 observations. Typical waves and
corresponding periodograms, here for the syllable “Zi” (c′′ with 523.25 Hz), of
an amateur and a professional singer look as in Figure 3, and Figure 4.

Energy is generated from the wave observations wi by means of the formula:

energy = 20 · log10

n∑
i=1

|wi|, (1)

with block size n = 512. Local energy is analyzed for the accompaniment (see
Figure 5).

220 Claus Weihs and Uwe Ligges

Fig. 3. Waves for syllable “Zi” (c′′ with 523.25 Hz), amateur and professional

Fig. 4. Periodograms for syllable “Zi” (c′′ with 523.25 Hz), amateur and profes-
sional

0 500 1000 1500 2000 2500

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

periodogram

en
er

gy
(%

)

Fig. 5. Local energy of accompaniment

3 Local Analysis and Local Structure

Let us continue with some general arguments about local structure corresponding
to local events in time series. Musical local structure can be distinguished from

From Local to Global Analysis of Music Time Series 221

background by testing against zero energy and noise in local blocks of the time
series. Thus, in our analysis locality is related to time, and relevance of structure
is determined by signal amplitude and its harmonics in contrast to noise. In each
local block the signal is tested whether its energy is nonzero and whether its
spectrum can be distinguished from spectra typical for noise. Only after musical
structure is detected this way, pitch is estimated and more global structure is
looked for.

Here is our procedure of testing against background:

1. Test peaks in spectrum against zero amplitude by checking whether relative
peak height is high, i.e. bigger than 1% of maximum amplitude, and

2. test for noise by checking whether in the 20% blocks with lowest energy there
are blocks with more than 10 high peaks.

Thus low energy blocks with a large number of peaks in the spectrum, indicating
noise, are identified as background. Note that harmonic structure can be iden-
tified by a small number of peaks in the spectrum which are strongly related to
each other in that beneath the fundamental frequency only multiples appear in
the spectrum, the so-called overtones. The parameters in our testing procedure,
namely the percentages and the number 10 of high peaks were fixed empirically
and might be improved by optimization, even individually for a singer.

In order to be able to identify local events, one has to analyze the time series
in a granularity that allows for identification of relevant events. Thus, the first
task in the analysis is the identification of the size of blocks of observations in
the time series to be analyzed. On the one hand, the smaller the blocks, the more
exact the time period of an event can be identified. On the other hand, the smaller
the number of observations in such a block, the more uncertain is the information
on the event in the block. Moreover, it should be clear that event information
has to be somewhat redundant to be able to be sufficiently certain about an
event. For time series event analysis this can be interpreted as the requirement
for ‘enough’ blocks ‘supporting’ the event. Obviously, however, more blocks will
lead to smaller blocks and to more uncertain information. Overall, block size is
a very important topic to be decided upon in the beginning of time-series-event
analysis.

In our application, the most basic events are related to notes, which, again,
are related to frequencies of signals. Frequencies are best derived from spectral
densities. Spectral densities, however, are only observed at Fourier frequencies.
The distance of Fourier frequencies is determined by the analyzed block size.
E.g., in the case of a sampling rate of 11025 observations per second and a
block size of 512 observations, the distance of Fourier frequencies is 11025/512 =
21.5 Hz. If frequency estimates would be restricted to Fourier frequencies, then
this distance would determine the precision of estimates. This would lead to
unacceptably large time series blocks. If neighboring Fourier frequencies are too
distant especially for identifying low tones, e.g. of a bass singer, it appears to be
necessary to estimate the frequency of the realized tone between the observed
frequencies. Our idea is to estimate the maximum of a quadratic model fitted to

222 Claus Weihs and Uwe Ligges

the Fourier frequency with maximum mass and its left and right neighbor. This
leads to pitch estimated by interpolated peaking Fourier frequencies:

pitch := h + ((s − h)/2)
√

ds/dh, (2)

where h = peaking Fourier frequency, s = peaking neighbor, dh, and ds are
the corresponding density values. The quality of this method is tested with
Midi tones corresponding to the tones sung by human voices. This resulted
in a very acceptable maximum error lower than 2 Hz. Moreover, we use half
overlapping blocks in our analysis. This leads to 12 blocks corresponding to an
eighth for our application if constant tempo is assumed. This was assumed to
be enough information for note identification for eighths which are the shortest
note appearing in the analyzed song. Based on these arguments, a block size of
512 observations is used in the further analysis.

4 Transcription

Transcription of waves to sheet music can be divided into at least 5 steps:

– Separation of a single voice from other sound,
– segmentation of the sound of the selected voice into segments corresponding

to notes, silence or noise,
– quantization, i.e. the derivation of relative lengths of notes,
– meter detection in order to separate notes by bars,
– key determination and
– final transcription into sheet music.

In our project, separation was already carried out by recording, i.e. the
singing voice and the piano accompaniment were separated to different chan-
nels. Hyvärinen et al. (2001) propose ICA for polyphonic sound separation. See
von Ameln (2001) for a music example. Segmentation was carried out by pitch
estimation followed by classification to a corresponding note.

In our project, segmentation into notes is based on the pitch estimation
described in the previous section. The segmentation procedure is described in
detail in the next subsection. For alternatives in the literature cp., e.g., Cano
et al. (1999) describing a Hidden Markov Model, and Dixon (1996) proposing a
method using direct pitch estimation.

In quantization the relative lengths of notes (eighth notes, quarter notes, etc.)
are derived from estimated absolute lengths. For this, global or local tempo is
derived from accompaniment. In our project the sound is separated into eighths
first, since we can assume that an eighth is the shortest note. For an alternative
see Cemgil et al. (2000).

Meter identification is carried out by comparing the pattern of accentuation,
i.e. the peaking energy distances, to standards corresponding to 4/4 and 3/4
(only, at the moment). Compare also Klapuri (2003). Key detection is postponed
to the future, and final transcription into music notation is carried out by an

From Local to Global Analysis of Music Time Series 223

Interface (Preusser et al., 2002) from R (R Development Core Team, 2004) to
LilyPond (Nienhuys et al., 2002). This final step also comprises the combination
of eighths of equal pitch to longer notes.

4.1 Segmentation Procedure

The task of segmentation is to identify so-called note events from the music
time series corresponding to one voice. The procedure can be divided into the
following steps:

– Passing through the vocal time series by sections of given size n (n = 512
appeared to be appropriate for a wave file sampled with 11kHz).

– Pitch estimation for each section by estimation of the spectral density by
means of a periodogram, and the interpolation described above of frequencies
of highest periodogram peaks.

– Note classification using estimated fundamental frequencies and the corre-
sponding overtones, given the frequency of diapason a′, which might have
been estimated.

– Smoothing of classified notes because of vibrato. In our project a doubled
running median with window width 9 is used. For an alternative vibrato
analysis see, e.g., Rossignol et al. (1999).

– Segmentation, iff a change in the smoothed list of notes occurs.

4.2 Transcription by Example

Transcription is now demonstrated by means of an example: the last part A of
the ABA scheme of “Tochter Zion” sung by a professional soprano singer. The
pitch of each 512-section of the vocal time series is estimated on the basis of the
estimated frequency of diapason a′ of accompaniment equal to 443.5 Hz, and
each corresponding note is classified.

In Table 1 the raw classified sections of the first measure are given, where
0 corresponds to diapason a′, other integers represent the distance of halftones
from a′, and silence and quiet noise is represented by NA. The singer has an
intensive vibrato: classification switches rapidly between 2 (b′), 3 (c′′), and 4
(c#′′) in the first 2 rows (changes marked by *). Smoothing does not smooth
off the intensive vibrato completely (see Table 2), the second half of the note
is classified one halftone flat. And moreover, the first sections are classified as
c′′′ instead of c′′ since only the first overtone is appearing in the spectrum (see
Figure 6).

In Figure 7 a first impression of the sheet music is given. The line indicates
the classified note events after smoothing without quantization. The indicated
bars are just showed for orientation. The progression of corresponding energy is
shown as well, low energy reflecting breathing, silence, and strong consonants.
Such parts will not be counted as errors in the following.

For meter assessment accentuation events are derived from accompaniment.
By smoothing constant energy in quarters is produced (cp. Figure 8), assuming

224 Claus Weihs and Uwe Ligges

Table 1. Raw classified sections of the first bar

* * * * * *

NA NA -12 NA 2 2 15 15 15 15 15 15 2 3 3 3 3 3 2 2 2 2 4 4

3 2 2 2 2 4 4 3 2 2 2 2 3 3 2 2 2 2 2 2 -30 NA NA NA

NA NA NA -27 -14 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1

0 0 0 0 -1 -1 -1 0 0 0 0 0 -1 0 1 1 1 1 1 1 1 0 NA NA

Table 2. Smoothed classified sections of the first bar

15 15 15 15 15 15 15 15 15 15 15 15 3 3 3 3 3 3 3 3 3 2 2 2

2 NA NA NA

NA NA NA 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 NA NA

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Frequency

no
rm

al
iz

ed
 p

er
io

do
gr

am

FF OT1 OT2

0 500 1000 1500 2000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Frequency

FF OT1 OT2

Fig. 6. c′′ estimation one octave to high: standard periodogram, and zoomed

global tempo (see below). Then, an accentuation event Ai is defined as
a turning point quarter with energy(quarter) > 0.75,
i.e. such a quarter is a turning point in that the energy of neighboring quarters is
lower, and its energy is high peaking. Then Di−1 := #(Ai)−#(Ai−1) indicates
the number of quarters between accentuation events, #(Ai) being the running
quarter number of accentuation event Ai. This can be used to establish rules for
the different meters, e.g.

no.(Di−1 = 4) > no.(Di−1 = 3) ⇒ 4/4 meter, (3)

meaning that differences of 4 are appearing more often than differences of 3.
In the next step to sheet music, static quantization is carried out, assuming

unit = eighth, and no.(eighths) are known. Global tempo is then characterized

From Local to Global Analysis of Music Time Series 225

bar

no
te

1 2 3 4 5 6 7 8

silence

e'
f'

f#'
g'

g#'
a'

a#'
b'
c''

c#''
d''

d#''
e''
f''

f#''
g''

g#''
a''

a#''
b''
c'''

en
er

gy

−8.4

46

Fig. 7. Progression of note events and energy

0 500 1000 1500 2000 2500

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

periodogram

en
er

gy
(%

)

Fig. 8. Smoothed energy indicating meter

by length(eighth) = length(series)/no.(eighths). Note events are now related
to eighths, and re-classified as the statistical mode of the 12 classified sections
of each eighth note in Table 2. Note that each row of Table 2 corresponds to
the 24 blocks of one quarter, i.e. two succeeding eighths. Since 4/4 meter was
identified, bar events are placed after each 8 eighths, assuming to be known that

226 Claus Weihs and Uwe Ligges

bar

no
te

1 2 3 4 5 6 7 8

silence

e'
f'

f#'
g'

g#'
a'

a#'
b'
c''

c#''
d''

d#''
e''
f''

f#''
g''

g#''
a''

a#''
b''
c'''

●

● ●

●

●

● ●
● ●

● ● ●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
● ● ●

●

●

●

● ●
● ● ●

● ●
●

●
●

●

●
●

●
●

● ●
●

● ● ● ●
● ● ● ● ● ● ● ●

●
●

en
er

gy

−8.4

46

Fig. 9. Progression of notes after quantization

� ������������� �������������� 	��
� ��
�� � ���� ���
��� 	��

��
Fig. 10. Original, and estimated sheet music of “Tochter Zion”

singing starts in the first measure with the first eighth. The result of this static
quantization together with bar placement is shown in the Figure 9 which can
“directly” be transcribed into notes. For comparison, true notes are shown as
grey horizontal bars.

For the final transcription into sheet music eighths with equal pitch are com-
bined and music symbols for rests are used to transcribe silence and low energy
noise. The result (cp. Figure 10) is judged by error rates calculated as follows:

error rate :=
no.(erroneously classified eighth notes, without counting rests)

no.(all eighth notes) − no.(eighth rests)

Note that in our example there are 64 eighth notes in 8 bars to be classified.
Obviously, there are 9 erroneously classified eighth notes, and 2 eighth rests,
thus the error rate is 9/62 = 15%. The transcriptions of the other singers’
performances gave error rates from 4% to 26%. Table 3 shows a comparison for

From Local to Global Analysis of Music Time Series 227

Table 3. Comparing error rates with and without counting rests

singer overall error error
(counting rests as errors) (cleared for rests)

1 0.11 0.07
2 0.19 0.04
3 0.25 0.21
4 0.23 0.20
5 0.11 0.07
6 0.16 0.10
7 0.30 0.26

4 soprano and 3 tenor singers of overall error rates (rests have been counted as
errors, even if the singer was not singing) and the error rates cleared for rests as
described above.

To assess our outcomes, one should, on the one hand, recognize that we used
some a-priori information like knowledge about the shortest note length (eighth
note, important for smoothers), the overall number of eighths (for global tempo),
and the begin of first sung eighth in the first bar (for bar setting). On the other
hand, one should note that the error rate is the sum of various kinds of errors:

– errors of the transcription algorithm, but also
– errors of the singer’s performances,
– esp. errors from inaccurate timings of singer,
– errors from static quantization: local tempo of accompaniment was ignored.

This might lead to an analysis of local tempo of the singer or of the accompa-
niment. At least in our experiment, however, local tempo of singers was very
irregular, and local tempo of accompaniment was only followed very roughly by
the singer so that utilizing of local tempo did not improve quantization.

In the future we will try to overcome the need of a-priori information, and
moreover, we will try to improve our transcription by modelling of vibrato aiming
at an improvement of the note classification.

5 Global Analysis: Comparison of Singers

Up to now we have analyzed pitch related information in the audio time series
locally and more and more globally. This way, we were aiming at automatic
transcription into scores. What we have nearly totally ignored until now is the
fact that different singers produce different performances of the song. In order to
compare such performances it is necessary to define global summary measures
characterizing the overall performance. One possible such measure is the size of
pitch errors compared to the given score to be reproduced. A possible ratio scale
is ‘parts of half tone’ pht. After assessment of pitch correctness by pht we con-
centrate on the information in the spectrum residual to pitch information. This

228 Claus Weihs and Uwe Ligges

FF OT 1 OT 2 OT 3 OT 4 OT 5 OT 6 OT 7 OT 8 OT 9

0.
00

0.
01

0.
02

Fig. 11. Pitch independent periodogram

is realized by elimination of pitch from the spectrum. The Fourier Frequencies
are linearly rescaled, so that the frequency corresponding to the fundamental is
mapped to 1, the frequencies corresponding to the first overtones are mapped to
2, 3, etc. Overlaying and averaging the spectra of different blocks lead to, what
we call, the pitch independent spectrum (cp. Figure 11). This time we used half
overlaying blocks of n = 2048 observations as a basis for periodograms. In pitch
independent spectra the size and the shape of the first 13 partials, i.e. the fun-
damental frequency (FF) and the first 12 overtones (OT1, ..., OT12), are used
as characterizations of the residual information in the spectrum after pitch elim-
ination, which is said to be related to the individual timbre of the performance.
In order to measure the size of the peaks in the spectrum, the mass (weight) of
the peaks of the partials are determined as the sum of the percentage shares of
those parts of the corresponding peak in the spectrum which are higher than a
pre-specified threshold. The shape of a peak cannot easily be described. There-
fore, we only use one simple characteristic of the shape, namely the width of the
peak of the partials. The width of a peak is measured by the half tone distance
between the smallest and the biggest frequency of the peak with a spectral height
above a pre-specified threshold. Mass is measured as a percentage (%), whereas
width is measured in parts of halftones (pht). For details on the computation
of the measures see Güttner (2001). Based on music theory as a last voice char-
acteristic formant intensity is chosen. This gives the part of mass lying in what
one calls the singer’s formant lying between 2000 and 3500 Hz individual for the
voice types (Soprano, Alto, Tenor, Bass). A large singer’s formant characterizes
the ability to dominate an orchestra. Overall, every singer is characterized by the
above 28 characteristics as a basis for comparison. Figure 12 illustrates the voice
print corresponding to the whole song “Tochter Zion” for a particular singer.
For masses and widths boxplots are indicating variation over the involved tones.

As an example for comparison let us consider the masses of professional and
amateur bass and soprano singers. Figure 13 illustrates that professional singers
(Becker and Hasse) have less mass at the fundamental frequency and more mass
on higher overtones. The latter is especially true the professional bass singer who
has particularly large mass at the singer’s formant (cp. Figure 14). For sopranos
the singer’s formant does not appear to be that pronounced in general.

From Local to Global Analysis of Music Time Series 229

●● ●

−1.0 −0.5 0.0 0.5 1.0

Halftone Distance

●● ●● ●

0.0 0.1 0.2 0.3 0.4 0.5

Formant Intensity

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●●
●

FF 1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mass

●●

●

●

●●

●

●

●

●

●
●●

●

●●
●

●

●
●

●

●
●●

●●●

●●
●●●
●

●
●
●

0
2

4
6

8
10

Width

FF 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 12. Voice print: Professional Bass Singer

●

●

●
●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●● ●●

●●
●

FF 1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

Mass Bass.Becker

●

●

●

●

●

●

●

●

●

●●●

●●●

●
●

●

●

●
●● ●

●

●●

●
●

●

●●●
●

●

●

●

FF 1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

Mass Sopran.Hasse

●●●

●

●

●

●●●
●

●

●
●
●

●

●

●
●●
●

●

●●
●

●

●

●

●

●

●
●
●●

●●
●

●● ●●●
●● ●

●
●● ●

FF 1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

Mass Bass.02

●

●
●

●

●
●

●

●●

●●
●
●●

●

●
●
●

●

●

●
●

FF 1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

Mass Sopran.05

Fig. 13. Voice prints: Comparison of Masses

230 Claus Weihs and Uwe Ligges

0 1000 2000 3000 4000

Bass.Becker

Frequency (Hertz)

C
um

ul
at

ed
 N

or
m

al
iz

ed
 P

ow
er

0.
00

00
0.

01
25

0.
02

50

0 1000 2000 3000 4000

Sopran.Hasse

Frequency (Hertz)

C
um

ul
at

ed
 N

or
m

al
iz

ed
 P

ow
er

0.
00

00
0.

01
25

0.
02

50

0 1000 2000 3000 4000

Bass.02

Frequency (Hertz)

C
um

ul
at

ed
 N

or
m

al
iz

ed
 P

ow
er

0.
00

00
0.

01
25

0.
02

50

0 1000 2000 3000 4000

Sopran.05

Frequency (Hertz)

C
um

ul
at

ed
 N

or
m

al
iz

ed
 P

ow
er

0.
00

00
0.

01
25

0.
02

50

Fig. 14. Comparison of Formants: Formants indicated by vertical lines

6 Conclusion

Our analysis was embedded in a more general concept of combination of time
series and event analysis (cp. Morik, 2000). We derived three different kinds of
events, for other events event rules have to be derived in the future:

– Note events are derived by pitch analysis of time series.
– Accentuation events are derived by energy analysis of time series.
– For bar events an event rule was derived by comparison of accentuation

events with meter related accentuation patterns.
– Rhythm rules have to be derived in the future by comparison of note

lengths with rhythm patterns.
– Higher structuring rules for identification of motifs, and phrases of music

pieces have to be derived in the future from prescribed event rule types.

Note that we did not derive time series models corresponding to event rules to
complete the time-series-event analysis. Concerning local and global analysis we
investigated the local and somewhat more global structure of a piece of music:

– Very local pitch and energy estimation was the basis for identification of
more global note events.

– Note events were basic for transcription: Identification was based on smooth-
ing of local preliminary notes.

– Local energy estimation of quarters was the basis for accentuation events
and meter identification.

From Local to Global Analysis of Music Time Series 231

– Bar events structure note events: Identification was based on accentuation
events.

More global analyses would be key analysis, rhythm analysis, and motif and
phrase analysis of music pieces. This was postponed to future research.

For the global comparison of different singers voice prints were developed. In
particular, this lead to the identification of pitch independent spectral differences
of basses and sopranos and of professionals and amateurs.

References

[1] von Ameln, F.: Blind source separation in der Praxis. Diploma Thesis, Fachbereich
Statistik, Universität Dortmund, Germany (2001)

[2] Cano, P., Loscos, A., Bonada, J.: Score-Performance Matching using HMMs. In:
Proceedings of the International Computer Music Conference, Beijing, China (1999)

[3] Cemgil, T., Desain, P., Kappen, B.: Rhythm Quantization for Transcription. Com-
puter Music Journal 24 (2000) 60–76

[4] Dixon, S.: Multiphonic Note Identification. Australian Computer Science Commu-
nications 17 (1996) 318–323

[5] Güttner, J. : Klassifikation von Gesangsdarbietungen. Diploma Thesis, Fachbereich
Statistik, Universität Dortmund, Germany (2001)

[6] Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John
Wiley and Sons, New York (2001)

[7] Klapuri, A.: Automatic Transcription of Music. In: Proceedings of the Stockholm
Music Acoustics Conference, SMAC03 (2003)

[8] Morik, K.: The Representation Race – Preprocessing for Handling Time Phe-
nomena. In López de Mántaras, R., Plaza, E., eds.: Proceedings of the European
Conference on Machine Learning 2000 (ECML 2000), Lecture Notes in Artificial
Intelligence 1810, Berlin, Springer (2000)

[9] Nienhuys, H.W., Nieuwenhuizen, J., et al.: GNU LilyPond – The Music Typesetter.
Free Software Foundation. (2002) version 1.6.5

[10] Preusser, A., Ligges, U., Weihs, C.: Ein R Exportfilter für das Notations- und
Midi-Programm LilyPond. Arbeitsbericht 35, Fachbereich Statistik, Universität
Dortmund, Germany (2002)

[11] R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2004)

[12] Rossignol, S., Depalle, P., Soumagne, J., Rodet, X., Collette, J.L.: Vibrato: De-
tection, Estimation, Extractiom, Modification. In: Proceedings 99 Digital Audio
Effects Workshop (1999)

[13] Weihs, C., Berghoff, S., Hasse-Becker, P., Ligges, U.: Assessment of Purity of In-
tonation in Singing Presentations by Discriminant Analysis. In Kunert, J., Trenkler,
G., eds.: Mathematical Statistics and Biometrical Applications, Lohmar, Josef Eul
Verlag (2001) 395–410

[14] Weihs, C., Ligges, U.: Automatic transcription of singing performances. In: Bul-
letin of the International Statistical institute, 54th Session, Proceedings. Volume LX.
(2003a) 507–510

[15] Weihs, C., Ligges, U.: Voice Prints as a Tool for Automatic Classification of Vocal
Performance. In: Kopiez, R., Lehmann, A.C., Wolther, I., Wolf, C., eds.: Proceedings
of the 5th Triennial ESCOM Conference, Hanover University of Music and Drama,
Germany, 8-13 September 2003 (2003b) 332–335

Author Index

Adams, Niall M., 39

Baron, Steffan, 190
Bonchi, Francesco, 1
Boulicaut, Jean-François, 115

Džeroski, Sašo, 71

Fürnkranz, Johannes, 20

Giannotti, Fosca, 1
Grobelnik, Marko, 89

Hand, David J., 39
Heard, Nick A., 39
Höppner, Frank, 53

Köpcke, Hanna, 98

Lavrač, Nada, 71
Ligges, Uwe, 217

Mladenic, Dunja, 89
Morik, Katharina, 98

Pensa, Ruggero G., 115

Radvanyi, Francois, 135
Rouveirol, Céline, 135
Rüping, Stefan, 153

Scholz, Martin, 171
Spiliopoulou, Myra, 190
Suzuki, Einoshin, 207

Weihs, Claus, 217

Železný, Filip, 71

	Frontmatter
	Pushing Constraints to Detect Local Patterns
	From Local to Global Patterns: Evaluation Issues in Rule Learning Algorithms
	Pattern Discovery Tools for Detecting Cheating in Student Coursework
	Local Pattern Detection and Clustering
	Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery
	Visualizing Very Large Graphs Using Clustering Neighborhoods
	Features for Learning Local Patterns in Time-Stamped Data
	Boolean Property Encoding for Local Set Pattern Discovery: An Application to Gene Expression Data Analysis
	Local Pattern Discovery in Array-CGH Data
	Learning with Local Models
	Knowledge-Based Sampling for Subgroup Discovery
	Temporal Evolution and Local Patterns
	Undirected Exception Rule Discovery as Local Pattern Detection
	From Local to Global Analysis of Music Time Series
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

